
Faculty of Dentistry
Pediatric Dentistry and Community Department

**EFFECT OF DIFFERENT REMINERALIZING AGENTS ON
PRIMARY AND PERMANENT TEETH EXPOSED TO
CHLORINATED POOL WATER
(IN VITRO STUDY)**

**A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science**

In

Pediatric Dentistry

Submitted by

Mariam Ashraf Abdelwahab Saleem

B.D.S. 2018

Faculty of Dentistry, Misr University for Science and Technology

2025

ABSTRACT

Background: Remineralization is essential in pediatric dentistry for treating early dental lesions in both primary and permanent teeth, with fluoride recognized as the gold standard for its ability to inhibit demineralization and enhance remineralization. Effective remineralization requires sufficient calcium and phosphate ions, leading to systems like casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), known for its calcium content. Recent advancements, such as P11-4, mimic natural processes to enhance mineral gain and form hydroxyapatite crystals. However, research on remineralizing teeth exposed to chlorinated water, particularly for children who frequently swim, is limited, and many new agents have been limited to being fully reviewed.

Study objective: This study aimed to evaluate the effect of different remineralizing agents applied to primary and permanent teeth exposed to chlorinated pool water.

Materials and methods: twenty-seven exfoliated or extracted primary teeth and twenty-seven extracted permanent teeth. A 4x4 mm window was made in the middle of the labial surface of each tooth then exposed to chlorinated water for 8 hours for 7 days and then divided into six groups with 8 teeth in each group, group I: primary teeth remineralized with self-assembling peptide (P11-4), group II: primary teeth remineralized with Casein phosphopeptide-amorphous calcium phosphate (CPP-ACPf), group III: primary teeth remineralized with (5%Naf), group IV: permanent teeth remineralized with self-assembling peptide (P11-4), group V: permanent teeth remineralized with Casein phosphopeptide-amorphous calcium phosphate (CPP-ACPf), group VI: permanent teeth remineralized with (5%Naf). Remineralization will be assessed quantitatively by using an energy-dispersive X-ray spectrometer (EDX), while surface micromorphology will be assessed qualitatively by using a scanning electron microscope.

Results: Elemental analysis revealed a significant decrease in both calcium (Ca %) and phosphorus (P %) after demineralization compared to baseline values (P-value < 0.001). Primary teeth showed greater mineral loss in erosion-like lesions than permanent teeth. Following remineralization, all groups exhibited increases in Ca %, P %, and Ca/P %, with P11-4 achieving the highest remineralization levels. Permanent teeth displayed more pronounced mineral recovery than primary teeth. P11-4 induced the most significant remineralization effect in both groups, with statistically significant differences between P11-4 and other groups (P < 0.001). Artificial saliva alone also promoted some remineralization. Surface topographical analysis using SEM showed improved enamel features after applying all remineralizing agents, with smooth, homogeneous surfaces, particularly in permanent teeth across all treatments. Self-assembling peptide P11-4 was the most effective treatment in primary and permanent teeth.

Conclusion: P11-4 exhibited the most pronounced remineralization effect in both primary and permanent teeth, with permanent teeth showing a more significant recovery. While artificial saliva facilitated some remineralization, P11-4 significantly outperformed all other treatments. Surface analysis confirmed enhanced enamel morphology, notably in permanent teeth following remineralization.

Keywords: Self-assembling peptide P11-4, Remineralizing agent, Fluoride, Curodont, CPP-ACP, Primary teeth, Permanent teeth, Chlorinated water, Swimming pools

كلية طب الاسنان
قسم طب اسنان الأطفال

تأثير مواد اعاده التمعدن على الأسنان اللبنية والدائمة المعرضة لمياه
حمامات السباحة المعالجة بالكلور
(دراسة معملية)

رسالة علمية مقدمة

ضمن متطلبات الحصول على درجة الماجستير في

طب أسنان الأطفال

مقدمه من

مريم أشرف عبد الوهاب سليم
بكالوريوس - كلية طب الاسنان - جامعه مصر للعلوم والتكنولوجيا - ٢٠١٨

كلية طب الاسنان
جامعه فاروس بالإسكندرية
٢٠٢٥

الملخص العربي

المقدمة: تعتبر المياه المكلورة في حمامات السباحة من العوامل التي قد تسبب بداية مراحل تأكل الأسنان، حيث يتعرض المينا لفقدان المعادن. تُعد هذه العملية قابلة للتعويض في مراحلها المبكرة إذا تم التدخل المناسب. لذلك، جرت العديد من الدراسات لتطوير مواد جديدة تهدف إلى إعادة تمعدن المينا. ومن المعروف أن دمج مواد استعادة المعادن قد يعزز من قدرتها على استعادة المعادن المفقودة.

الهدف: تهدف هذه الدراسة إلى تقييم ومقارنة تأثيرات إعادة تمعدن الأسنان باستخدام مزيج من البيبيتيد الذاتي التجميع

Casein Phosphopeptide-Amorphous Calcium Phosphate Fluoride (CPP-P11-4)

مع طلاء الفلوريد بالصوديوم ٥٪، وذلك لتقويم الأسنان المتأثرة بآفات تأكل مشابهة للمياه المكلورة. كما تم تقييم التغيرات في العناصر السطحية والمعدنية للأسنان الأولية وال دائمة.

المواد وطريقة الاستخدام: تكونت العينة من ٢٧ سنة أولية و ٤٧ سنة دائمة. تم تجهيز كل سنة عبر عمل نافذة ٤x4 مم في السطح الشفوي الأوسط. تم تعرية الأسنان لمياه حمام السباحة المكلورة ثم تم تقسيم الأسنان عشوائياً إلى ٦ مجموعات رئيسية على النحو التالي:

P11-4.1: أسنان أولية تم علاجها بـ

(CPP-ACPF): أسنان أولية تم علاجها بـ

٥٪ NaF:

P11-4.2: أسنان دائمة تم علاجها بـ

(CPP-ACPF): أسنان دائمة تم علاجها بـ

٥٪ NaF:

تم تقسيم كل مجموعة إلى نصفين، حيث تم علاج نصف الأسنان بمواد المعالجة والنصف الآخر ترك كعينة تحكم سلبية. ثم تم تخزين العينات في اللعب الصناعي لمدة ١٠ أيام.

النتائج: أظهرت نتائج التحليل العنصري باستخدام الأشعة السينية المشتتة للطاقة (EDX) فروقاً ذات دلالة إحصائية في محتوى الكالسيوم والفوسفور ونسبة الكالسيوم إلى الفوسفور بعد العلاج في جميع المجموعات، مما يشير إلى أن

جميع المواد المستعملة كانت فعالة في استعادة المعادن في الأفاف المتأثرة بالتأكل المبكر. ومع ذلك، أظهرت المجموعة التي تم علاجها بـ P11-4 تحسناً أكبر في استعادة المعادن مقارنة بالعوامل الأخرى.

كما أظهرت الفحوصات باستخدام المجهر الإلكتروني الماسح (SEM) تحسناً في التركيب السطحي للأسنان بعد تطبيق جميع المواد المعالجة، حيث أظهرت المينا المعالجة سطحًا أملسًا ومتجانساً مقارنة بالمينا المتأثرة بالتأكل.

الاستنتاجات: تعتبر جميع المواد المعالجة فعالة في استعادة المعادن المفقودة في الأسنان المتأثرة بتأكل مبكر، لكن المادة P11-4 أظهرت أفضل نتائج مقارنة بمواد أخرى في تحسين الخصائص السطحية والمعدنية للمينا.

النوصيات

١- يُوصى باستخدام البيبتيذ الذاتي التجميغ كعلاج فعال في إعادة تمعدن الأسنان، خاصة في حالات التأكل الناتج عن التعرض المستمر للمياه المكثورة، مثل حالة السباحين التنافسيين.

٢- يُنصح بإجراء دراسات إضافية على مواد معززة لإعادة تمعدن الأسنان، لتقدير تأثير دمج هذه المواد مع البيبتيذ الذاتي التجميغ لتحقيق أفضل نتائج في علاج تأكل المينا.

٣- يُوصى بإجراء دراسات سريرية طويلة المدى لتحديد فعالية البيبتيذ الذاتي التجميغ في الظروف السريرية، خصوصاً في أوساط السباحين، لتقدير مدى استدامة العلاج وفعاليته في الوقاية من تأكل الأسنان على المدى البعيد.

٤- ضرورة تطوير استراتيجيات وقائية لمرضى السباحين التنافسيين تشمل تطبيق البيبتيذ الذاتي التجميغ بانتظام، وكذلك البحث في إمكانية تضمين هذا العلاج ضمن بروتوكولات الرعاية السنوية الوقائية لمنتسبي الرياضات المائية.

٥- يُنصح بمواصلة البحث العلمي لتحديد الآثار الجانبية المحتملة لاستخدام البيبتيذ الذاتي التجميغ على المدى الطويل، خصوصاً في حالات الأطفال أو الأشخاص الذين يعانون من مشاكل صحية خاصة