

جامعة فاروس الاسكندرية

جامعة فاروس

Publications Template

		Abstract	Publication Publishing	Publishing Link "URL"
Polyelectrolyte membranes based on phosphorylated-PVA/cellulose acetate for direct methanol fuel cell applications: synthesis, instrumental characterization, and performance testing	Polymer for Fuel cells applications	Designing and synthesis of cost- effective and improved methanol permeable and proton conductive membranes are the main challenges for preparation of polymeric electrolyte membrane (PEM). Herein, a cost-effective PEM membrane based on phosphorylated polyvinyl alcohol (PVA)-grafted- cellulose acetate (CA) was prepared by a solution-casting technique. Water and methanol uptakes of phosphorylated PVA/CA membranes were characterized as function with the molar ratio of CA. Additionally, structure and morphology of phosphorylated PVA/CA (Ph-PVA/CA) membranes were verified by FT-IR analysis, SEM investigation. Furthermore, ion exchange capacity (IEC), proton conductivity and methanol permeation of Ph-PVA/CA membranes were examined based on	2023	https://doi.org/10.1016/j.memsci.2004.06.032

Page 1 of 78	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Rev. (1) Date (13-9-2018)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

			اروس	جامعه قا			
			The results manifing improvement in properties of the following of the proventies of	ch make them late as PEM for			
2	Preparation and characterization of poly (vinyl alcohol)/Carboxymethyl Cellulose/ Acrylamide - based membranes for DMFC applications	Polymer for Fuel cells application	Carboxy methyl Acrylamide (AA prepared and of succinic acid and polymer electro (PEM) in direct (DMFC). The	yl alcohol (PVA) - cellulose (CMC) - A) membranes are crosslinked using investigated it as a rolyte membrane methanol fuel cell membranes were gh the solution	2023	10.21608/EJCHEM.2023.176338.7218	
Re	رية الوثيقة: استخدام داخلي Page 2 of 78 Document Security Level = ا		نموذجC-V Template	Doc. No. (PUA-IT-P01-F0 Issue no.(1) Date (13-9-20			

جامعة فاروس الاسكندرية

جامعة فاروس

casting technique. The effect of different blend addition on physicochemical properties was studied. Scanning electron microscopy (SEM) was used to study the morphological structure, which indicated that no phase separation or cracks and good component compatibility. Chemical interaction between PVA, CMC, and AA was confirmed using Fourier transform infrared (FT-IR) in which the four characteristic absorption bands at 572, 1414, 3302 and 3411 cm-1 which confirm the presence of -NCO-, -COO-, -OH and -NH2, respectively. Furthermore. mechanical strength, water uptake, gel fraction, and ion exchange capacity (IEC) were determined as functions of varied membrane components. The results revealed that the addition of CMC and AA improves mechanical strength, IEC and protonic conductivity that reached 23.41 MPa, 0.11 mmol/g and 1×10-3 S/cm, respectively. Such results enhance the potential feasibility of PVA/CMC/AA hybrid polyelectrolytic membranes for DMFC application.

جامعة فاروس الاسكندرية

		1	جامعه فاروس	T		↓
3	Structure of plasma deposited acrylic acid-allyl alcohol copolymers	Material science	Copolymer thin films with two types of functional groups have excellent performance as sensors, for example. The formation and deposition of allyl alcohol-acrylic acid copolymer films by pulsed high frequency plasma is a complex process. As usual, the chemical composition of the top surface of the films was investigated by XPS and FTIR measurements. Furthermore, contact angle measurements with water were used to characterise the hydrophilicity and wettability of the polymer films. After plasma deposition, a significant decrease in functional groups (OH and COOH) was observed compared to the classically copolymerised equivalent. The remaining functional groups, i.e. the majority of these groups, were sufficient for application as sensor layers. Segmental mobility and conductivity, important for sensor applications, were analysed by broadband dielectric spectroscopy.	2023	https://doi.org/10.1002/ppap.202300071	
	Nano-MnO ₂ /xanthan gum composite films for NO ₂ gas sensing	Sensors	Nowadays, sensors based on polymers/nanostructured metal oxide composites have been investigated extensively because of	2023	https://doi.org/10.1016/j.matchemphys.2022.1	272
Rev.	رية الوثيقة: استخدام داخلي Page 4 of 78 (1) Date (13-9-2018) Document Security Level = ا	-	Doc. No. (PUA-IT-P01 - C-V Template نموذج Issue no.(1) Date (13-9 -	'		

جامعة فاروس الاسكندرية

their sensitivity to NO ₂ gas at ambient temperature. In this work, nanocomposite membranes of xanthan gum (XG) with different contents of MnO ₂ nanoparticles were prepared as a potential NO ₂ gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of the nanocomposites XG/MO-4,	
ambient temperature. In this work, nanocomposite membranes of xanthan gum (XG) with different contents of MnO2 nanoparticles were prepared as a potential NO2 gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nanoparticles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	their sensitivity to NO ₂ gas at
of xanthan gum (XG) with different contents of MnO ₂ nanoparticles were prepared as a potential NO ₂ gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	
of xanthan gum (XG) with different contents of MnO ₂ nanoparticles were prepared as a potential NO ₂ gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	nanocomposite membranes
MnO ₂ nanoparticles were prepared as a potential NO ₂ gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	of xanthan gum (XG) with different
as a potential NO ₂ gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	contents of
operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nanoparticles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	MnO ₂ nanoparticles were prepared
simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nanoparticles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	as a potential NO2 gas sensor
reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nanoparticles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	operating at room temperature by a
morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nanoparticles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	simple one-step oxidation-reduction
the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	reaction. The structural,
the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the oxidation of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	morphological, thermal, and
investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the <u>oxidation</u> of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the <u>XPS</u> technique. The DC <u>conductivity</u> and <u>dielectric</u> loss of nanocomposites were higher than for neat XG. The conductivities of	electrical properties of
investigated. The FT-IR results confirm the successful preparation of MnO ₂ through the <u>oxidation</u> of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the <u>XPS</u> technique. The DC <u>conductivity</u> and <u>dielectric</u> loss of nanocomposites were higher than for neat XG. The conductivities of	the <u>composite membrane</u> were
of MnO ₂ through the <u>oxidation</u> of XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the <u>XPS</u> technique. The DC <u>conductivity</u> and <u>dielectric</u> loss of nanocomposites were higher than for neat XG. The conductivities of	investigated. The FT-IR results
XG by KMnO ₄ and reveal further the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	confirm the successful preparation
the structural changes of the XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	
XG/MnO ₂ nanocomposite upon its exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	
exposure to NO ₂ gas. The capping of the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	the structural changes of the
the synthesized MnO ₂ nanoparticles by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	XG/MnO ₂ nanocomposite upon its
by XG, the surface composition of the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	exposure to NO ₂ gas. The capping of
the XG/MnO ₂ nanocomposite membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	the synthesized MnO ₂ nanoparticles
membranes, and the effect of NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	
NO ₂ gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	the XG/MnO ₂ nanocomposite
was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	*
the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	
the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of	was investigated using
of nanocomposites were higher than for neat XG. The conductivities of	the XPS technique. The
for neat XG. The conductivities of	
the nanocomposites XG/MO-4,	
	the nanocomposites XG/MO-4,

جامعة فاروس الاسكندرية

	روس	جامعة فار	جامعة فاروس					
	4/high NO ₂ compand three orders of than that for putransition from conductive prop demonstrated XG/MnO ₂ nanoc membranes are potential applications.	erties. The results that omposite promising for ations in NO ₂ gas						
Waterborne nano-emulsions of polyvinyl acetate-polyurethane coatings containing different types of vinyl monomers: synthesis and characterization	This paper aims terpolymers by polymerization to of acrylamide-b monomers (TPM different vinyl systems, such as acrylate (Vacetate/ethylhexy EHA) and vinyl of versatic acid systems. The poprepared terpolymenulsion coati industries was compared with commercial ones New waterborne ester-vinyl acetate	to synthesize new y the emulsion echnique composed ased polyurethane II and MPM) with acetate copolymer vinyl acetate/butyl Ac/BA), vinyl vl acrylate (VAc/2-acetate/vinyl ester (VAc/VEOVA 10) erformance of the mers as binders in ngs and textile investigated and a the analogous . polyurethane-vinyl te terpolymers with ent and nano-scale	https://doi.org/10.1108/PRT-06-2021-0063					
مستوى سرية الوثيقة: استخدام داخلي Page 6 of 78 Rev. (1) Date (13-9-2018) Document Security Level = Internal Use	نموذ جC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)						

جامعة فاروس الاسكندرية

جامعة فاروس

emulsions have been successfully synthesized in two steps. The polyurethane oligomers were prepared by the prepolymer method as the first step. The second step involved polymerization with different vinyl monomers. The synthesized terpolymers were characterized using FTIR, scanning electron microscope, thermogravimetric analysis, minimum film forming temperature and particle size analyzer methods. The synthesized emulsion terpolymers have shown small particle sizes averaged of 70 nm and a narrow distribution range, along with good mechanical, thermal and chemical stabilities. The surface coating layers of the terpolymers also have some important in terms of smoothness, clarity and binding ability in water-based coating for up to 4425 scrub cycles at 30 GU. Further, a high potential application textile printing was achieved at high solid content of 47–50%. The effects of different isocyanates and vinyl monomers on the properties of obtained emulsion coatings have been studied. The

جامعة فاروس الاسكندرية

حامعة فاروس

	جامعة فاروس				
	improvement consequences of the coating evaluation of the waterborne binders for emulsion paints have been described. The properties of polyester/cotton fabric print pigment printing of textiles appear to be most promising enhancements by using the prepared nanocomposites of PU-co-vinyl acetate-co-vinyl ester as waterborne binders. So that the prepared emulsions have the potential to replace solvent-based coatings as waterborne binders for both emulsion coating and textile printing applications.				
Composite Loaded by Philones	An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared				
Page 8 of 78 مستوى سريـة الوثيقة: استخدام داخلي Doc. No. (PUA-IT-P01-F07) Rev. (1) Date (13-9-2018) Document Security Level = Internal Use C-V Template: نموذج Issue no.(1) Date (13-9-2018)					

جامعة فاروس الاسكندرية

حامعة فادوس

		اروس	جامعة فا			
		to pure PVF. chemical bonds a the Pb ions a composite based This bond form increase in the T to the formation of complexation b layers of PVF/G conductivity incre orders of magnitu values of the PVF compared to the the presence of P factor for enhanci where the conduct changed from in	This means that are formed between and the PVF/GO on the OH groups. In the property of a strong surface between adjacent and composite. The eases by about 2.8 and compared to the E/GO/Pb composite PVF. This means Pb ions is the maining the conductivity ection mechanism is onic for PVF to ction for PVF/GO			
Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNTs/TiO ₂ as photocatalysts and plasma discharge	Water treatment	water-poor are in the world. In addit a dramatic increat pollutions of river which led us to treat industry. The plasma disclosure of the impapplicable wastewater deconstruction of the impapplicable wastewater deconstruction.	harge technique is portant, safe, and for industrial	2022	https://doi.org/10.1016/j.jece.2021.106854	
سرية الوثيقة: استخدام داخلي Page 9 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Int	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07 Issue no.(2) Date (30-11-20)			

جامعة فاروس الاسكندرية

		جامعه فاروس			
		(BBR) dye as a hazard material was			
		noticed when the contaminated			
		solution was exposed to the plasma			
		discharge technique. The			
		combination between the			
		nonthermal plasma and catalysts was			
		evaluated in this work to optimize			
		the degradation efficiency. The			
		PVDF/(MWCNTs/TiO ₂) as three			
		system composites was employed to			
		enhance the nonthermal plasma			
		performance. The surface area,			
		phase purity, shape,			
		and photonic efficiency were			
		characterized employing XRD,			
		FTIR, <u>SEM</u> , <u>DSC</u> , and UV–Vis.			
		techniques. The obtained results of			
		degradation using NTP technique in			
		presence of the PVDF/MWCNTs			
		catalyst have been enhanced the			
		BBR dye degradation by 19% than			
		only plasma treatment for 20 min.			
		The durability processes of prepared			
		PVDF/(MWCNTs/TiO ₂) was			
		investigated and evaluated until 8			
		solar photocatalytic process			
		repeating times.			
Impact of Starch Coating		The strawberry has a very short			
Embedded with Silver		postharvest life due to its fast			
Nanoparticles on Strawberry	Coatings	softening and decomposition. The	2022	https://doi.org/10.3390/polym14071439	
Storage Time		goal of this research is to see how			
Page 10 of 78 مستوى سرية الوثيقة: استخدام داخلي Doc. No. (PUA-IT-P01-F07)					
Rev. (1) Date (13-9-2018) Document Security		C-V Template نموذج Issue no.(1) Date (13-9 -			

جامعة فاروس الاسكندرية

جامعة فاروس

well a starch-silver nanoparticle (St-AgNPs) coating affects the physical, chemical, and microbiological qualities of strawberries during postharvest life. Additionally, the effect of washing with running water on silver concentration in coated strawberry fruit was studied by an inductively coupled plasma-optical emission spectrometer (ICP-OES). Furthermore, the shelf-life period was calculated in relation to the temperature of storage. Fourier transform infrared-attenuated total reflectance (FTIR-ATR). Visible, and Transmission Electron Microscopic (TEM) were used to investigate the structure of starchsilver materials, the size and shape of AgNPs, respectively. The AgNPs were spherical, with an average size range of 12.7 nm. The coated samples had the lowest weight loss, decay, and microbial counts as compared to the uncoated sample. They had higher total acidity and anthocyanin contents as well. The washing process led to the almost complete removal of silver particles by rates ranging from 98.86 to 99.10%. Finally, the coating

جامعة فاروس الاسكندرية

maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage. Apricots are a fragile fruit that rots quickly after harvest. Therefore, they have a short shelf-life. The purpose of this work is to determine the effect of coatings containing chitosan (CH) as well as its nanoparticles (CHNPs) as thin films on the quality and shelf-life of apricots stored at room (25 ± 3 °C) and cold (5 ± 1 °C) temperatures. The physical, chemical, and sensorial changes that occurred during storage were assessed, and the shelf-life was estimated. Transmission electron microscopy was used to examine the size and shape of the nanoparticles had a spherical shape with an average diameter of 16.4 nm. During the storage of the apricots, those treated with CHNPs showed an obvious decrease in weight loss, decay percent, total soluble solids, and lipid peroxidation, whereas total acidity, ascorbic acid, and carotenoid content were higher than those in the fruits treated with CH		جامعة فاروس		
Apricot Fruits Transmission electron microscopy was used to examine the size and shape of the nanoparticle. The nanoparticles had a spherical shape with an average diameter of 16.4 nm. During the storage of the apricots, those treated with CHNPs showed an obvious decrease in weight loss, decay percent, total soluble solids, and lipid peroxidation, whereas total acidity, ascorbic acid, and carotenoid content were higher than those in the fruits treated with CH	as Edible Coating on the	maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage. Apricots are a fragile fruit that rots quickly after harvest. Therefore, they have a short shelf-life. The purpose of this work is to determine the effect of coatings containing chitosan (CH) as well as its nanoparticles (CHNPs) as thin films on the quality and shelf-life of apricots stored at room (25 ± 3 °C) and cold (5 ± 1 °C) temperatures. The physical, chemical, and sensorial changes that occurred during storage were assessed, and	2002	
Page 12 of 78		was used to examine the size and shape of the nanoparticle. The nanoparticles had a spherical shape with an average diameter of 16.4 nm. During the storage of the apricots, those treated with CHNPs showed an obvious decrease in weight loss, decay percent, total soluble solids, and lipid peroxidation, whereas total acidity, ascorbic acid, and carotenoid content were higher than those in the fruits treated with CH		

	Page 1	.2 of /8
Rev. (1) Date	(13-9-2018)

جامعة فاروس الاسكندرية

	جامعة فاروس	
	and the untreated fruits (control). The findings of the sensory evaluation revealed a significant difference in the overall acceptability scores between the samples treated with CHNPs and the other samples. Finally, it was found that CHNP coatings improved the qualitative features of the apricots and extended their shelf-life for up to 9 days at room temperature storage	
Photo-curable carboxymethylcellulose composite hydrogel as a promising biomaterial for biomedical applications Polymer f biomedic application	al 365 nm. On the other 2022	https://doi.org/10.1016/j.ijbiomac.2022.03.201
Page 13 of 78 داخلی Page 13 of 78 داخلی Page 13 of 78 (2) Date (30-11-2019) Document Security Level = Internal Use	Doc. No. (PUA-IT-P01-F07) C-V Template نموذج Issue no.(2) Date (30-11-2019)	

جامعة فاروس الاسكندرية

	جامعه فاروس							
				characteristics. hydrogel form GMA copolym irradiation time a different concent GMA nano-fille dependance on and gel fraction hydrogels. Nota CNCs-g-GMA r progressively the prepared hydro filled with CNCs hydrogel sh activity against r resistance pathog GMA filled w composite hydrogel	Factors affecting mation, e.g. CMC-g- mer concentration, and incorporation of attration of CNCs-g- r, were discussed in the swelling degree of the produced bly, the addition of manofillers increased the error of the produced bly, the addition of manofillers increased the error of the produced bly, the addition of manofillers increased the error of the produced bly, the addition of manofillers increased the error of the produced bly, the addition of manofillers increased the error of the error o			
	copolymer is acrylic acid sulfonation	f plasma-deposited films prepared from and styrene: Part III and electrochemical roperties	Polymer f Fuel cell applicatio	films were of chemically more pulsed plasma recontinuous modes some slightly be marginal crossly styrene unit of chemically	etyrene copolymer deposited plasma- re gently using the mode instead of the de, with linear and ranched chains and linking. Then, the opolymers was wet- sulfonated by cid. On exposure to	2022	https://doi.org/10.1002/ppap.202100222	
1 11	Page 14 of 78) Date (13-9-2018)	ريــة الوثيقة: استخدام داخلي = Document Security Level	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F 0 Issue no.(1) Date (13-9-2 0			∐

جامعة فاروس الاسكندرية

	جامعة فاروس						
		air, the formed 4-chlorosulfonic acid groups hydrolyze to sulfonic acid groups ($-SO_3H$). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy were employed to characterize the composition, structure, functional groups, and electrochemical performance of the copolymers. A high concentration of sulfonic acid-containing groups was obtained in the sulfonated polystyrene sample. The values of the DC conductivity σ_{DC} for the sulfonated sample of the acrylic acid and styrene copolymer are ca. five orders of magnitude higher than that of the					
Synthesis and Characterization of Nylon 6,6-Polyvinyl Alcohol-Based Polyelectrolytic Membrane	Polymer for Fuel cells	not-sulfonated copolymer materials. This work presents the preparation and investigation of blended nylon (N)/polyvinyl alcohol (PVA)-based polyelectrolytic membranes that are modified with different concentrations of sulfuric acid (SA), chlorosulfonic acid (CSA), and sulfonated activated carbon (SAC) as a filler. Scanning electron microscopy (SEM) micrographs illustrated good membrane homogeneity, and no cracks or phase	2022	https://doi.org/10.1007/s13369-022-07537-3			
پة الوثيقة: استخدام داخلي Rev. (2) Date (30-11-2019) Document Security Level =	-	Doc. No. (PUA-IT-P01-F0 Lissue no.(2) Date (30-11-2 0)	<i>'</i>]		

جامعة فاروس الاسكندرية

	جامعة فاروس						
separation were detected. Chemical							
			interaction betwe	en N, PVA, and			
			other membrane components was confirmed by Raman scattering				
			spectroscopy and	Fourier transform			
			infrared (FTIR).	In addition, the			
			molecular structu	ire is verified by			
			energy depressiv	ve X-ray (EDX).			
				ter and methanol			
			uptake, gel fraction	on, and IEC were			
			determined as fu	inctions of varied			
			membrane	modification			
			components. The	e results revealed			
			that increasing th	ne portion of SA,			
			CSA and SAC lea	d to an increase in			
			IEC and ionic co	onductivity values			
			reached 2.12 meq	/g-0.076 S/cm for			
			(N/PVA-4.0%	SA-4.0% SAC),			
			respectively, and	2.71 meq/g-0.087			
			S/cm for (N/PVA	A-4.0% CSA-4.0%			
			SAC), respective	ly, while the IEC			
			and ionic conducti	ivity value for non-			
			modified N/PVA	membrane was			
			0.02 meq/g and z	zero, respectively.			
			Such results enhance	ance the potential			
				modified N/PVA			
			electrolytic memb	oranes for fuel cell			
			(FC) applications.				
	Influence of pH values on the	Corrosion and	Chromium (VI) coatings are highly				
	electrochemical performance of	plasma	toxic and <u>carcinogenic</u> ; therefore,		2021	https://doi.org/10.1016/j.arabjc.2021.103391	
	electroenement performance of	Chemistry	emistry thea should be replaced by a new				
	رية الوثيقة: استخدام داخلي Page 16 of 78	مستوی س	نموذجC-V Template	Doc. No. (PUA-IT-P01-F0			
Rev.	(1) Date (13-9-2018) Document Security Level = 1	Internal Use	C-v Template	Issue no.(1) Date (13-9-20	18)		

جامعة فاروس الاسكندرية

	جامعة فاروس
low carbon steel coated by	eco-friendly material that retains its
plasma thin SiO_xC_y films	effectiveness in terms of corrosion.
	Herein, thin <u>silicon</u> oxycarbide films
	as an eco-friendly anticorrosive
	coating were deposited on a low
	carbon steel substrate by a radio
	frequency capacitively coupled
	plasma technique using tetraethyl
	orthosilicate (TEOS) as a precursor.
	The corrosion performance of the
	coatings were evaluated by
	potentiodynamic polarization
	and electrochemical impedance
	spectroscopy (EIS) in dependence
	on the gap distance between the
	plasma electrodes and the pH values
	at <u>room temperature</u> . The chemical
	bonding and morphological features
	of the deposited films were
	investigated by Fourier
	Transformer Infrared
	Spectroscopy in Attenuated Total
	Reflectance (ATR-FTIR) mode, X-
	Ray Diffraction (XRD), and energy-
	dispersive X-ray spectroscopy
	(EDX) coupled with scanning
	electron microscopy (SEM).
	The corr values were significantly
	decreased by reducing the gap
	distance and reached a minimum at
	1 cm gap distance. It was reduced

Page	1/ of /8
Page Rev. (2) Date	(30-11-2019)

Rev. (1) Date (13-9-2018)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس

from 12 µA/cm² for the blank sample to 0.714 µA/cm² in treated sample at gap distance 1 cm and protective efficiency reached ~ 94% in the neutral solution. Nevertheless, the best protective efficiency achieved more than 99% of the total protection in alkaline medium as measured at room temperature for treated sample at gap distance 1 cm. Study of the photocatalytic activity of the synthesized polyvinylidene fluoride/multi-walled carbon nanotubes/titanium dioxide (PVDF/x% (MWCNTs/8% TiO2) nanocomposites using a simple modified solvent casting technique in decontamination of hazardous industrial wastewater and Reactive Yellow 145 dye as an industrial organic pollutant (local textile dye) were evaluated. Also, different MWCNTs/8% TiO2 weight percentages in PVDF/x% (MWCNTs/8% TiO2) nanocomposites were prepared and evaluated. The surface morphology and the structures of the synthesized samples were characterized using SEM, ATR-FIIR, DRS, XRD, and BET. The evaluated bandgap values			جامعة فاروس		
Recycling of supported nanocomposites for hazardous industrial wastewater treatment via Solar photocatalytic process Water treatment via Solar photocatalytic process Of the synthssized polyvinylidene fluoride/multi-walled carbon nanotubes/titanium dioxide (PVDF/x%(MWCNTs/8%TiO2) nanocomposites using a simple modified solvent casting technique in decontamination of hazardous industrial wastewater and Reactive Yellow 145 dye as an industrial organic pollutant (local textile dye) were evaluated. Also, different MWCNTs/8%TiO2 weight percentages in PVDF/x%(MWCNTs/8%TiO2) nanocomposites were prepared and evaluated. The surface morphology and the structures of the synthesized samples were characterized using SEM, ATR-FTIR, DRS, XRD, and			sample to 0.714 µA/cm² in treated sample at gap distance 1 cm and protective efficiency reached ~ 94% in the neutral solution. Nevertheless, the best protective efficiency achieved more than 99% of the total protection in alkaline medium as measured at room temperature for treated sample at gap distance 1 cm.		
	nanocomposites for hazardous industrial wastewater treatment	Water treatment	Study of the photocatalytic activity of the synthesized polyvinylidene fluoride/multi-walled carbon nanotubes/titanium dioxide (PVDF/x%(MWCNTs/8%TiO2) nanocomposites using a simple modified solvent casting technique in decontamination of hazardous industrial wastewater and Reactive Yellow 145 dye as an industrial organic pollutant (local textile dye) were evaluated. Also, different MWCNTs/8%TiO2 weight percentages in PVDF/x%(MWCNTs/8%TiO2) nanocomposites were prepared and evaluated. The surface morphology and the structures of the synthesized samples were characterized using SEM, ATR-FTIR, DRS, XRD, and	2021	https://doi.org/10.1016/j.ejpe.2021.02.001

Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

for	
MWCNTs/xTiO ₂ nanocomposites	
are from 2.38 to 2.69 based on the	
weight ratios (2%, 5%, and 8%). The	
results of the surface area of samples	
and the best optical behavior	
obtained at MWCNTs/8%TiO ₂ are	
reported and its photodegradation	
rate raised to $10.22 \times 10^{-3} \text{S}^{-1}$. The	
photodegradation process of	
Reactive Yellow 145 dye by	
PVDF/x%(MWCNTs/8%TiO ₂)	
nanocomposites was monitoring	
using chemical oxygen demand	
(COD). Also, the observed PL	
intensity for	
PVDF/MWCNTs/8%TiO ₂ has high	
photonic efficiency and	
photocatalytic activity. The solar	
photocatalytic process efficiency for	
an Egyptian dying factory by	
repeating it 10 times using	
PVDF/10% (MWCNTs/8%TiO ₂)	
nanocomposites as a supported	
photocatalyst for the industrial	
wastewater treatment was evaluated	
by the COD method and still under	
Egyptian environmental law allowed	
COD limit (1000 ppm).	

Document Security Level = Internal Use

Rev. (1) Date (13-9-2018)

جامعة فاروس الاسكندرية

جامعة فاروس

One-step plasma deposited thin SiO _x C _y films for corrosion resistance of low carbon steel	Corrosion and plasma chemistry	Tetraethyl orthosilicate (TEOS) was used as a chemical precursor to deposit ultra-thin SiO _x C _y plasma polymer films onto mild steel surfaces for preventing the corrosion process. The structure–property relationships of the coatings were evaluated by X-ray Photo Spectroscopy (XPS), X-Ray Diffraction (XRD), Fourier Transform InfraRed spectroscopy (ATR-FTIR) and Energy Dispersive X-ray spectroscopy (EDX) completed with Scanning Electron Microscopy (SEM). The SEM micrographs confirmed a pinhole-free surface morphology of the low-pressure deposited plasma polymer films. The TEOS molecules become fragmented in the plasma by numerous collisions with energy-rich electrons and heavier particles. Recombination of fragments and condensation onto the steel substrate is responsible for the formation of organic SiO containing plasma polymer layers. Such thin layers consist of predominantly SiO _x structures. Their properties are determined largely by the gap distance between the two samples	2021	https://doi.org/10.1080/01694243.2020.1856539
رية الوثيقة: استخدام داخلي Page 20 of 78	مستوی س	Doc. No. (PUA-IT-P01 –	F07)	

Issue no.(1) Date (13-9-2018)

نموذجC-V Template

جامعة فاروس الاسكندرية

حامعة فادوس

	جامعة فاروس						
		efficiency of protecting coating with uncoated corrosion protecti by exposure of NaCl aqueous sepurpose, pol Electrochemical Spectroscopy (Electroscopy) (El	ion was determined samples to 3.5% solutions. For this larization and Impedance IS) were used to osion. The optimal ween the electrodes d for corrosion best protective d more than 97% of on as measured at				
Novel PVA/Methoxytrimethylsilane elastic composite membranes: preparation, characterization and DFT computation	Material Science	(PVA/Si _{OH} /Si _{OC}) solution-casting different 1:1, 1 volume ratios of (PVA):methoxytr (MTMS). Moreound energy-dispectroscopy (ED to account for the rearrangements within PVA matro of MTMS has impossible to account for the rearrangements.	2:2, 1:3 and 1:4 polyvinyl alcohol rimethylsilane over, FT-infrared	2021	https://doi.org/10.1016/j.molstruc.2021.130173		
رية الوثيقة: استخدام داخلي Page 21 of 78 Rev. (2) Date (30-11-2019) Document Security Level - I		نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-20 1	·			

جامعة فاروس الاسكندرية

composite membranes as compared
to pristine PVA. In addition, the
crystallinity and the morphological
changes of PVA/MTMS composites
was studied using X-ray diffraction
(XRD) and scanning electron
microscope (SEM), respectively.
Three structures were suggested
based on trimethyl silanol (I) wet out
condensation (II and III) with the
dopped PVA followed by and H-
bonding interactions (IV). The
outcomes of B3LYP/6-31G(d)
frequency calculations favors a
three-dimensional SiOC linked
network (III). Nevertheless, EDX
reveals, the 3D SiOC links are not
observed on the surface of composite
membranes, however, is found
dominant in the bulk,
[(CH ₃) ₃ SiOCH ₂ CH ₂ CH ₂ O] _n .
Moreover, the solubility, density,
and refractive index of the
synthesized composites were
measured and found depended on the
ratio of PVA in the composite
membranes. The current results are
compared with that published earlier
including dimethoxydimethylsilane
at the same conditions.

Rev. (2) Date (30-11-2019)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس The work explores the synthesis and

		The work explores the synthesis and		
		the properties of a novel composite		
		membrane system based on		
		modified polystyrene (PS) grafted		
		onto a polyvinyl chloride (PVC)		
		membrane. PVC membranes were		
		prepared by solution-casting		
		followed by exposure to an		
		atmospheric		
		pressure dielectric barrier discharge		
		(DBD) with O ₂ to obtain an		
		activated surface for grafting PS to		
		it. Moreover, the thus prepared		
Modified polyvinyl chloride		membranes were chemically		
membrane grafted with an ultra-	Polymer for	modified furthermore by amination		
thin polystyrene film: structure	Fuel Cells	with polyethyleneimine or	2021	https://doi.org/10.1016/j.jmrt.2021.04.018
and electrochemical properties	applications	sulfonation with 4 M sulfuric acid.		
		The membrane surface		
		characteristics such as wettability,		
		structure and morphology were		
		investigated using water contact		
		angle measurements, attenuated total		
		reflection Fourier transform infrared		
		spectroscopy and scanning electron		
		microscopy experiments. The		
		thermogravimetric stability and		
		electrolytic responses of the		
		membranes were studied		
		utilizing <u>TGA</u> , ion exchange		
		capacity (IEC), and solvent uptake.		
		A significant result of plasma and		

Issue no.(2) Date (30-11-2019)

جامعة فاروس الاسكندرية

Ш		جامعه فاروس						
				produce a member low permeabilismethanol perme	ranes measured for measured to compared to s ⁻¹ of Nafion 117® red as a benchmark. dicates that the red samples are an affective material for ethanol crossover in great extent. This g-St membranes are attractive as new			
		Cellulose nanocrystals from sugarcane bagasse and its graft with GMA: Synthesis, characterization, and biocompatibility assessment	Polymer for biomedical applications	of cellulose nar from sugarcane hydrolysis of Crystallinity and characterized by at 77% and 260 CNCs were graft an aqueous suspe initiated free rad cerium ammonium	hats the preparation mocrystals (CNCs) bagasse via acid bleached pulp. size of CNCs were XRD and zetasizer nm, respectively. It copolymerized in tension by a redox-lical method using m nitrate (CAN) as ecidyl methacrylate	2021	10.7324/JAPS.2021.110215	
	Rev.	رية الوثيقة: استخدام داخلي Page 24 of 78 [1) Date (13-9-2018) Document Security Level	- •	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07 Issue no.(1) Date (13-9-201	·		

جامعة فاروس الاسكندرية

(GMA) was grafted onto CNCs to improve its physicochemical properties and biological activity. The parameters affecting the grafting of CNCs-g-GMA, e.g., GMA and CAN concentrations and grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of CNCs-g-GMA for all grafting
properties and biological activity. The parameters affecting the grafting of CNCs-g-GMA, e.g., GMA and CAN concentrations and grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
The parameters affecting the grafting of CNCs-g-GMA, e.g., GMA and CAN concentrations and grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
grafting of CNCs-g-GMA, e.g., GMA and CAN concentrations and grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
GMA and CAN concentrations and grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
grafting time were studied. The results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
results revealed that high grafting yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
yield (~180%) was obtained by increasing GMA and middle concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
concentration of the CAN initiator (2 mmol/g). The grafting yield (%) of
CNCs-\sigma-GMA for all grafting
crites g Givin 101 am granting
conditions was calculated
gravimetrically, while CNCs-g-
GMA was characterized by FTIR,
scanning electron microscope, and
thermal gravimetric analysis
analyses. Antimicrobial activity of
CNCs and CNCs-g-GMA was
assessed in vitro against human
Gram +ve and -ve bacteria and
against Candida albicans fungus. 2.5
g l-1 of CNCs-g-GMA copolymer
showed the highest antimicrobial
activity, due to its significant ability
to kill ~80% of Staphylococcus
aureus, 71.4% of Salmonella
typhimurium, and 70% of Klebsiella
pneumonia. Also, CNCs and CNCs-
g-GMA exhibited clinically

جامعة فاروس الاسكندرية

حامعة فاروس

		روس	جامعة فا		
Porous Polyvinyl Formaldehyde / MWCNTs Foam for Pb+2 Removal from Water	Water treatment	accepted cell vialmost 90%–100% WI38 human normal Preparation of polyvinyl formal walled carb (PVF/MWCNTs) one step acetalization of (PVA). The PVF/MWCNTs cas an eco-friend sorbets for Pb (medium. Fourier (FTIR), and scanning elect (HRSEM) were the chemical morphological prepared foam. That equilibrium of that equilibrium of adsorption capacity	iability (%) with % versus HDF and mal cell lines. f macro-porous ldehyde / multi- on nanotubes foam was done via reaction during polyvinyl alcohol e as-prepared composite was used lly, easy recovery (II) from aqueous transform infrared high-resolution fron microscopy used to investigate composition and structure of the The results showed occurred within 60 with a maximum ty 3.4 mg/g with 43	2021	10.21608/ejchem.2020.34453.2733
Dags 36 of 79		min at pH≈ 5 adsorption capaci % removal (con- weight of compo- the kinetic resul- with pseudo-sec- indicating that mechanism is nature. Therefore,	with a maximum ty 3.4 mg/g with 43 asidering the total osite). In addition, its are most fitted cond-order model to the reaction chemisorption in the its suggested that F/MWCNTs foam	n	
Page 26 of 78 رائيقة: استخدام داخلي Page 26 of 78 (1) Date (13-9-2018) Document Security Level = Ir	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07 Issue no.(1) Date (13-9-201	<i>'</i>	

جامعة فاروس الاسكندرية

حامعة فادوس

		اروس	جامعة ف			
Development of biodegradable poly (vinyl alcohol) /chitosan cross linked membranes for antibacterial wound dressing applications	Polymer for biomedical applications	can be used in systems as an efficiency sorbent. In this study alcohol/chitosan membranes were surface crosslinking advanced were applications. For Infrared Spectroply and Scanning Elec (SEM) analysist conducted to illust structures and the changes of membranes. In mechanical investigated using machine. The showed that PVA membrane recorded of 46.2 N compared Cs, indicating that process improve membrane. Beside character of membranes was water uptake study from 187% and 187% and 187% and 187%.	y, poly vinyl (PVA/Cs) re developed via ring technique for ound dressing ourier Transform shotometer (FT-IR) rectron Microscope	2021	jjbs.hu.edu.jo/files/vol14/n1/old/Binder14n1old.pc	j#pa
ی سریـة الوثيقة: استخدام داخلي Page 27 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Interr	-	115% for the دموذج	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-201	-		

جامعة فاروس الاسكندرية

membrane. Two different types of bacteria were used for studying the anti-bacteria activities of the developed cross linked membranes, namely gram-positive bacteria (Staphylococcus aureus) and gram-negative bac	i	روس	جامعه فار		
atmospheric non-thermal gas plasma. A response surface methodology (RSM) combined with Page 28 of 78 مستوی سریة الوثیقة: استخدام داخلی مستوی سریة الوثیقة: استخدام داخلی مستوی سریة الوثیقة: استخدام داخلی	plasma discharge: optimization,	membrane. Two bacteria were use anti-bacterial a developed cross namely gram-[Staphylococcus negative bacteria The anti-bacteria developed cross was augmented native PVA and the maximum in increased from 10 30% after crosslinked membrane better bio-degrad the mechanical stabic suggest that the crimembranes cou applied as anti-degradable dresse the wound healing Decolorization of (AO142) as pollutant was exposure of the of	different types of ed for studying the activities of the linked membranes, positive bacteria aureus) and grama (Escherichia coli). al activity of the linked membranes de compared with Cs membranes as abilition (%) value and 12% to 22 and dinking. Besides, the embranes exhibited dability; moreover, trength of the cross nes showed good dility. The findings cross linked PVA/Cs and be efficiently ebacterial and bioners for accelerating ag process. If Acid Orange 142 important water observed on the dye solutions to an	2020	
	Page 28 of 78	 plasma. A methodology (RS	response surface SM) combined with	<i>'</i>	

جامعة فاروس الاسكندرية

		جامعة فاروس		
		a central composite design (C		
		was utilized to optimize the		
		factors (variables) affecting		
		degradation efficiency (respons	e) of	
		AO142, such as the applied vol	tage,	
		the gap distance between the	high	
		voltage electrode and the surfa	ce of	
		the solution. The regression and	alysis	
		showed that a first-order polynomial	omial	
		model well fits the experimental	data	
		with a coefficient of determin	ation	
		$R^2 = 0.96$. FT-IR, UV-vis, TOO	and	
		GC-MS measurements were us	ed to	
		investigate the decolorization of	of the	
		dye on exposure to the pl	asma	
		discharges. A possible degrad	ation	
		pathway was postul	ated.	
		Additionally, the conductivity	and	
		pH changes during the treat	ment	
		were also evaluated. The pl	asma	
		treatment combined	with	
		Fe ²⁺ (plasma Fenton reac	tion)	
		exhibited a higher degrad	ation	
		efficiency, higher energy	yield	
		connected with lower en	nergy	
		consumption in comparison to		
		plasma treatment wi	thout	
		Fe ²⁺ addition.		
Structure/property relationship of	Material	A novel mixed matrix composit	e has	
polyvinyl	Science	been prepared using solution-ca		https://doi.org/10.1016/j.saa.2019.117810
alcohol/dimethoxydimethylsilane	Science	method at different vo	lume	
Page 29 of 78 برية الوثيقة: استخدام داخلي	مستوی س	Doc. No. (PL	IA-IT-P01-F07)	
Rev. (2) Date (30-11-2019) Document Security Level = In	-	دموذجC-V Template الموذج C-V Template	te (30-11-2019)	

جامعة فاروس الاسكندرية

جامعة فاروس

displacements for the suggested hydrolyzed products involving the

PVA/Si_{OH}/Si_{OC}/Si_{OSi} functional groups compared with those given in

dominant

composite membrane:	concentrations of polyvinyl alcohol;
Experimental and theoretical	PVA (50, 67, 75 and 80%) and fixed
studies	amount of dimethoxydimethylsilane
	in air atmosphere. The hydrolyzed
	dimethyldisilanol acts as in-situ
	cross linker through a wet-
	out <u>condensation</u> between
	the <u>hydroxyl</u> moieties of Si _{OH} and
	PVA _{OH} . Such process improves the
	mechanical properties of composite
	membranes as compared to pristine
	PVA which has been determined as
	function of varied membrane
	components to evaluate the
	structure/property relationships.
	Furthermore, DFT (B3LYP)/6-
	31G(d) geometry and frequency
	computations were carried out for
	the suggested dimeric PVA
	structures via 1,3-diol linkage
	followed by condensation
	and <u>hydrogen</u> bonding interaction.
	Vibrational interpretations of
	composite membranes were
	proposed based on the computed
	wavenumbers, Cartesian coordinates

Page 30 of 78	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Rev. (1) Date (13-9-2018)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

	جامعة فاروس					
			literatures. FTIR and EDX provide clear evidences for			
			incorporating <u>silicon</u> to 3D network.			
			Meanwhile, the infrared de-			
			convoluted spectral interpretations			
			ensure 17–30% cross-linked SiOC			
			within the network of composite			
			membranes.			JL.
			The synthesis and optimization of			
			superior and eco-			
}			friendly sorbents for Pb(II) pose a			
			great challenge in the field of water			
			treatment. The sorbent was			
			developed by introducing graphene			
			oxide (GO) into the matrix of			
			polyvinyl formaldehyde (PVF)			
			foam. The immobilization of GO in			
	High performance graphene-		PVF results in significant increase in			
	based PVF foam for lead		the maximum adsorption capacity			
	removal from water	Water treatment	(Qt) of GO powder for Pb(II), from		https://doi.org/10.1016/j.jmrt.2020.08.011	
	Temovar from water		$\approx 800 \text{ to } \approx 1730 \text{ mg g}^{-1} \text{ in the case of }$			
			GO/PVF foam. As compared with			
			GO powder in Pb(II) aqueous			
			solutions, PVF matrix keeps GO			
			sheets stable without any			
			agglomeration. The large surface			
			area of GO sheet allows the			
			abundant oxygenated functional			
			groups on its surface to participate			
			effectively in the Pb(II) adsorption			
			process, leading to the huge increase			$\downarrow \mid$
	Page 21 of 70		Dec No (DUA IT DO) F	07)		11

Page 31 of 78	
Rev. (2) Date (30-11-2019)	

جامعة فاروس الاسكندرية

حامعة فادوس

جامعة فاروس					
		of the Qt. Adsorpt kinetic studies in sorption process GO/PVF was done surface by ion-ex. The GO/PVF for excellent reusability 10 cycles with efficiency and significant change properties.	ndicated that the of Pb(II) on e on heterogenous exchange reaction. oam showed an ity for more than almost the same without any		
Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films	Material Science	For the first electrochemical re films of a pla acrylic acid/ca AA/CO ₂ (75/25%) modified by i nanoparticles are pulsed plasma p AA/CO ₂ was utiliz obtain a maximal groups forming at linked polymer prepared polymer a silver nitrat impregnate Ag ⁺ ic followed by it Ag ⁺ with NaBH ₄ a in comparison to	elationships of thin asma-polymerized arbon dioxide of the copolymer implanted silver is discussed. The colymerization of the colyme	2020	https://doi.org/10.1021/acs.jpcc.0c06712
اسرية الوثيقة: استخدام داخلي Page 32 of 78 Rev. (1) Date (13-9-2018) Document Security Level = Int	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)	3)	

جامعة فاروس الاسكندرية

		جمعه قاروش		
		chemical composition morphology of the topmost sur layer of the AA/CO ₂ polymer film were investigated by X photoelectron spectroscopy atomic force microscopy. Moreon the molecular mobile conductivity, and thermal stability the polymer layer were analysusing broadband dielect spectroscopy. The dielect properties of the AA/CO ₂ polythin film were studied in presence of Ag ⁺ ions or Ag ⁰ . It found that a cross-linked polythayer with a smooth surface and I conductivity was obtained in presence of Ag ⁺ / Ag ⁰ .	thin ray and ver, lity, y of zed etric etric mer the was mer nigh	
Assessment of vinyl acetate polyurethane-based graft terpolymers for emulsion coatings: Synthesis and characterization	Coatings	Hybrid oligomers composed polyurethane methacrylate (PUN and polyurethane acrylate (PIN were synthesized by poly additional polymerization of polypropy glycol (PPG 1000), 2,4- and toluen diisocyanate (TDI 80/20) 2-hydroxyethyl methacrylate of hydroxyethyl acrylate. Isopropi was served as the isocyal blocking agent. The grafting either PUMA or PUA oligomer the vinyl acetate monomer	MA) JA) tion ene 2,6- and 2020 2- unol nate of s to	https://doi.org/10.1080/10601325.2019.1691448
ا = Page 33 of 78 Rev. (2) Date (30-11-2019) Document Security Level		Doc. No. (PUA C-V Template نموذجissue no.(2) Date		

جامعة فاروس الاسكندرية

جامعة فاروس

implemented for the first time for improving the properties of the produced PU-co-VAc or (PUP _{MA} or PUP _A) terpolymers as new binders for emulsion coating formulations. The synthesized terpolymers were characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the PVAC copolymer.	
produced PU-co-VAc or (PUP _{MA} or PUP _A) terpolymers as new binders for emulsion coating formulations. The synthesized terpolymers were characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	implemented for the first time for
PUPA) terpolymers as new binders for emulsion coating formulations. The synthesized terpolymers were characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUPMA or PUPA) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUPMA and PUPA terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
for emulsion coating formulations. The synthesized terpolymers were characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	produced PU-co-VAc or (PUP _{MA} or
The synthesized terpolymers were characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	PUP _A) terpolymers as new binders
characterized with Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	for emulsion coating formulations.
transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	The synthesized terpolymers were
(FTIR), proton nuclear magnetic resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	characterized with Fourier-
resonance (¹H NMR), scanning electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	transform infrared spectroscopy
electron microscope (SEM), gel permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	(FTIR), proton nuclear magnetic
permeation chromatography (GPC), minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	resonance (¹ H NMR), scanning
minimum film forming temperature (MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	electron microscope (SEM), gel
(MFFT), thermal gravimetric analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	permeation chromatography (GPC),
analysis (TGA), Zeta potential and mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	minimum film forming temperature
mechanical properties. It has been shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	, , , , ,
shown that properties of the terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	analysis (TGA), Zeta potential and
terpolymers and their corresponding films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	mechanical properties. It has been
films were greatly influenced by the grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
grafting of PUMA and PUA at a low concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	terpolymers and their corresponding
concentration level (5 wt%). Cured films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
films of PU based vinyl acetate (PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
(PUP _{MA} or PUP _A) exhibited higher thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
thermal stability and less weight loss compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
compared to the vinyl acetate copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
copolymer (PVAC). The synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
synthesized PUP _{MA} and PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	
PUP _A terpolymers revealed enhanced efficiency as binders for emulsion paints in comparison to the	copolymer (PVAC). The
enhanced efficiency as binders for emulsion paints in comparison to the	synthesized PUP _{MA} and
emulsion paints in comparison to the	PUP _A terpolymers revealed
	enhanced efficiency as binders for
PVAC copolymer.	
	PVAC copolymer.

نموذجC-V Template

جامعة فاروس الاسكندرية

حامعة فابم

جامعة فاروس							
	(vinyl acet PU) emu properties a emulsion binders.	ymers composed of poly cate-co-butyl acrylate-co-busions have excellent and high enhancements in paints as waterborne					
PLASMA POWER IMPACT ON ELECTROCHEMICAL PERFORMANCE OF LOW CARBON STEEL COATED BY PLASMA THIN TEOS FILMS	silicon ox investigate coatings. The corresion The chemical morpholog were examinated with scanner (SEM). The pinhole-free was formed plasma the resistance analyzed polarization spectroscopy.	The film was deposited on a steel substrate by radio	20 10.21	608/absb.2020.111474			
Page 35 of 78 مستوى سرية الوثيقة: استخدام داخلي Doc. No. (PUA-IT-P01-F07) Rev. (2) Date (30-11-2019) Document Security Level = Internal Use C-V Template العدود (30-11-2019)							

جامعة فاروس الاسكندرية

حامعة فابم

جامعة فاروس							
	electrochemical remarkable corresponding remarkable corresponding to the land 0.3 µA/cm² for the land 0.3 µA/cm² for at 50, and 100 W marked increase of properties was det sample with protomore than 98 % at r	after plasma corrosion current atly reduced from blank sample to 1 or treated samples V, respectively. A of the protective tected by 100 W tective efficiency					
A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics Coa	HEREIN, two oligomers were synthesized using mixing process. Were synthesized by growth addition process and polypropylene gly diphenyl diisocy hydroxyethyl met hydroxyethyl acrywas functioned as blocking agent. The terpolymer emulsic by the encopolymerization acetate monomer in ethylhexyl acrylation monomer. The chemical control of the control of t	polyurethane e successfully g a prepolymer The prepolymers based on the step- polymerization of lycol, Methylene yanate and 2- thacrylate or 2- vlate. Isopropanol as the isocyanate hereafter, different ons were prepared mulsion graft with the vinyl in presence of 2- ate as a vinyl	10.21608/ejchem.2020.21712.2292				
Page 36 of 78 مستوى سرية الوثيقة: استخدام داخلي Page 36 of 78 (المثية: الوثيقة: المتحدام داخلي Page 36 of 78 (المتحدام داخلي المتحدام داخلي Page 36 of 78 (المتحدام داخلي المتحدام داخ	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)					

جامعة فاروس الاسكندرية

جامعة فاروس					
		monomers were probed by FTIR			
		spectroscopy and found to vary with			
		the content of acrylic monomer used			
		in the oligomer synthesis phase			
		(i.e.hydroxyethyl acrylate or			
		hydroxyethyl methacrylate). The			
		topography, thermal stability, and			
		particle size of terpolymers were			
		investigated by SEM, TGA, and zeta			
		potential, respectively. The TGA			
		results demonstrated marked			
		enhancement in thermal stability of			
		the synthesized terpolymers up to ca.			
		600°C, which was concurrent with			
		enhanced surface homogeneity and			
		film properties as evidenced by the			
		SEM images. These terpolymers			
		showed also property enhancement			
		as binders for textile pigment			
		printing in terms of rubbing			
		resistance, color strength and			
		fastness to washing when compared			
		to the commercial binders. These			
		judgments would provide a new			
		competent synthesis route by			
		introducing polyurethane acetate			
		vinyl acrylate as the binder for use in			
		pigment printing of cotton fabrics.			
Synergistic Effect between	C	The inhibition process of steel	2010	hunn//dni nn/10 1515/n 1 2010 1000	
Natural Honey and 0.1 M KI as	Corrosion	against corrosion in 1.0 M HCl using	2019	https://doi.org/10.1515/zpch-2018-1208	
		natural honey in the presence and		<u> </u>	
رية الوثيقة: استخدام داخلي Page 37 of 78 (Page 37 of 78 (Page 37 of 78 (Page 37 of 78 (Page 37 of 78	-	Doc. No. (PUA-IT-P01 - C-V Template: نموذج Issue no.(2) Date (30-11 -	-		
Document Security Level - II	111111111111111111111111111111111111111	1550C 110.(Z) Date (50-11-	,		

جامعة فاروس الاسكندرية

	جامعة فاروس					
Green Corrosion Inhibitor for		absence of 0.1 M KI was studied at				
Steel in Acid Medium		25–55 °C utilizing a				
		potentiodynamic polarization,				
		electrochemical impedance				
		spectroscopy (EIS) measurements				
		and gravimetric method.				
		Corresponding surfaces of steel were				
		examined by SEM and EDX				
		techniques. The obtained data				
		demonstrated that inhibition				
		efficiency increased by increasing				
		both natural honey dose and				
		environment temperature.				
		Synergism parameter values were				
		found more than one indicating that				
		the inhibition efficiency of natural				
		honey enhanced by an addition of KI				
		due to synergism. The adsorption of				
		natural honey in the presence and				
		absence of iodide ions on the steel				
		surface was found to follow				
		Langmuir adsorption isotherm.				
		A poly(vinyl chloride) (PVC)				
Enhancement of Poly(vinyl		membrane was exposed to				
chloride) Electrolyte Membrane		atmospheric-pressure dielectric				
by Its Exposure to an		barrier discharge and subsequently				
Atmospheric Dielectric Barrier	Fuel cells	wet-chemically grafted with	2019	https://doi.org/10.1007/s11090-019-10017-6		
Discharge Followed by Grafting		poly(acrylic acid) (PAA) and then				
with Polyacrylic Acid		consumed with poly(ethyleneimine)				
		(PEI). The thus modified membrane				
		was characterized by measurement				
رية الوثنِقة: استخدام داخلي Page 38 of 78	-	Doc. No. (PUA-IT-P01-	-			
Rev. (1) Date (13-9-2018) Document Security Level = I	nternal Use	Issue no.(1) Date (13-9-2	2018)			

جامعة فاروس الاسكندرية

المستحد المروس					
		scanning electrinfrared spectrosofthermogravimetry electrolytic respersive at thermatory electrolytic respersive at the exist thin PAA layer surface of the plasmembrane. The capacity measure poly(vinyl chlorosample was cladditionally aminated with PE (PVC–PAA–PEI) PVC–PAA membrane electron	onses. The TGA ally stable grafted at the ATR-FTIR stence of an ultragrafted onto the sma-modified PVC en ion exchange ement of the grafted ride) (PVC-PAA) lose to that of wet-chemically EI for 12 h or more at the branes do not need er modifications. As pful effect, it was a swelling degree of the production of the grafted erick in the production of the product		
Surface modification of polyvinyl chloride by polyacrylic acid graftas a polyelectrolyte membrane using Ar plasma	Fuel cells g	properties of a new on polyvinyl grafting with poly using argon (A	yacrylic acid (PAA) Ar) plasma. The f PVC were	2019	https://doi.org/10.3906/kim-1903-48
ا = Page 39 of 78 Rev. (2) Date (30-11-2019) Document Security Level	- *	نموذجC-V Template	Doc. No. (PUA-IT-P01-F0 Issue no.(2) Date (30-11-2 (*	

جامعة فاروس الاسكندرية

حامعة فاروس

		اروس	جامعة فا			i I
		as an ultrathin fill dielectric barrie atmospheric press. The surface of chemical compandified membra by water contact electron microsoptransform infrat Moreover, the properties of the investigated via	cosition of the canes were analyzed et angle, scanning copy, and Fourier red spectroscopy. electrochemical et membrane were a ion exchange courpose of using it			
Plasma O2 modifies the structure of synthetic zeolite-A to improve the removal of cadmium ions from aqueous solutions	Water treatment	The present sturemoval of cadming from aqueous so 7.5 using zeolit exposure to oxylactivation processover a wide range (10, 20, 30, and 4 times (30 to 360 cannot chemically a considerable exposure to additional OH grato humidity in the statement of the statemen	idy addresses the nium ions (Cd(II)) lutions at a pH of the activated by the idea of plasma. The sess was performed to of plasma powers to W) and exposure selections. Oxygen plasma by modify zeolite to extent, but it can be the formation of the idea of plasma by modify zeolite to extent, but it can be the formation of the idea of powers in ambient air. [+2]\$ ion removal	2019	https://doi.org/10.3906/kim-1808-14	
رية الوثيقة: استخدام داخلي Page 40 of 78 [Rev. (1) Date (13-9-2018) Document Security Level	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018))		

Rev. (2) Date (30-11-2019)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس

جامعة فاروس					
		with the plasma trattenuated to spectroscopy, scanning electronenergy dispersive applied to analyze surface structure the samples.	reatments. Infrared- otal reflectance X-ray diffraction, in microscopy, and espectroscopy were the changes in the and properties of		
POLYVINYL CHLORIDE MEMBRANES GRAFTING WITH POLYACRYLIC ACID VIA AR-PLASMA TREATMENT	Fuel cells	properties alter composite memb on polyvinyl grafting with poly using argon (A membranes of synthesized by method, where P onto PVC using discharge (DBD pressure with diff such as (O2, Ar, optimum condit process of Physicochemical investigated as for carrier gas for g PAA. ATR-FTI	ration of new brane system based chloride (PVC) vacrylic acid (PAA) Ar) plasma. The f PVC were solution-casting PAA was deposited g dielectric barrier b) at atmospheric ferent carrier gases N2, air) to get the tion for grafting acrylic acid. properties were function of varied grafting process of IR has provided letails of chemical	2019	10.21608/ABSB.2019.67895
Page 41 of 78 داخلي Page 41 of 78 داخلي ۱۳۵۹ اوثیقة: استخدام داخلي	مستوی،	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07		

Issue no.(2) Date (30-11-2019)

جامعة فاروس الاسكندرية

characterized by scanning electron
microscope (SEM). Moreover,
mechanical properties of the
membranes were studied using
tensile strength (TS). Surprising, the
wettability behavior of modified
PVC membrane with AA vapor
(plasma polymerization) is closed to
such membranes those treated with
O2 plasma-AA liquid. An ultra-thin,
pin hole free films of PAA were
deposited onto PVC membranes
leading to the increase of the
wettability feature of the
membranes. Meanwhile, ion
exchange capacity (IEC) of such
membranes was investigated by
volumetric method and it is directly
dependent on the electrochemical
properties of membranes. The IEC
values in case of grafting with PAA
in vapor phase are promising and
maybe related to the special structure
of plasma deposited polymers. The
grows in the electronegativity of the
grafted and sulfonated membranes is
an indication to the proton
permeability. Therefore, such
membranes may be used as
polyelectrolyte membranes (PEM)
in direct methanol fuel cell (DMFC).

Page **43** of **78**

Rev. (2) Date (30-11-2019)

مستوى سرية الوثيقة: استخدام داخلي

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس

جامعه فاروس						
In this investigation radical induced copolymerization reaction of virylypridine (VP)-Thorium (Th(IV)) complex with pure methylmethacrylate in dimethylsulfioxide using azobisisobutyronitrile as initiator led to formation of polymer metal composite. The prepared polymer composite was characterized by elemental analysis. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction. FT-IR results showed that the metal ion is coordinated via the nitrogen of VP. The solubility of Th(IV) complex and the formed polymer composite in polar and non-polar solvents was also tested. However, the conductivity measurements revealed nonelectrolytic nature of the complex. Moreover, the thermal properties of the prepared composite and their antitumor and antimicrobial activities were discussed. Additionally, in this work not only the nanocomposite as bulky						

نموذجC-V Template

Doc. No. (PUA-IT-P01-F07)

Issue no.(2) Date (30-11-2019)

Rev. (1) Date (13-9-2018)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس

	جامعة فاروس					
		prepared film was and atomic force m	posited utilizing position technique. Films have been the of grambia coli by corphology of the studied by SEM			
Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma	Water treatment	voltage electrode nof the solution, iniof Fe ²⁺ , and time of on the efficiency of (AO142) degradat and evaluated. Further on the Box–l surface methodole a model between the interaction of the proposed model was an R ² of 0.8005 reasonable agree R ² adj of 0.9307. A model, the optimus steel as a high voltage of the solution of the	material, initial pH itial concentration of plasma treatment of Acid Orange 142 tion were studied authermore, based Behnken response logy (BBD-RSM), tween response officiency %) and s was proposed to active effects and ess conditions. The was adequate with 5 which is in the ement with the According to the m conditions were large electrode, an .0, an initial	2018	https://doi.org/10.1016/j.chemosphere.2018.06.170	
رية الوثيقة: استخدام داخلي Page 44 of 78	مستوی س	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07)	1		

Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

جامعة فاروس

		روس	جامعه فار		
Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)- hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties	Polymer for biomedical applications	20 min time of tradecolorization eff In addition, the a UV–Vis, FT-IR, indicated the deg molecule. Interpenetrating membranes consensitive hyalurous thermo-sensitive isopropylacrylam were synthesize polymerization, methylenebisacry epichlorohydrin (chemical crossitions has by FTIR spectros intensively. The IHA incorporation increase the gel uptake, and the for crosslinked me it reduced oppositions in the strength of crosslinked me it reduced oppositions from the strength of the strength o	nan (HA) and poly(N-nide) (PNIPAAM) red using redox followed by N,N-ylamide (BIS) and (EPI) were added as osslinkers. The rewen membrane been characterized result indicates that on in membranes fraction, swelling flexibility/elasticity embranes, however rely the mechanical	2018	https://doi.org/10.1016/j.ijbiomac.2017.08.011
		PNIPAAm-HA hy to both temperature and the stimuli-reversible.	of membranes. hydrogels responded ure and pH changes responsiveness was However, in on results revealed		
الرثيقة: استخدام داخلي Page 45 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Ir	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-201 9	9)	

جامعة فاروس الاسكندرية

جمعه فاروس						
	that the released <u>ampicillin</u> during					
	the burst release time was sharply					
	influenced and increased with					
	increasing HA contents in					
	membranes; afterwards it became					
	sustainable. Whereas, high HA					
	contents in hydrogels unexpectedly					
	impacted negatively on the <u>cells</u>					
	<u>viability</u> , owing to the viscosity of					
	cell culture media changed. A big					
	resistance was observed					
	against microbial					
	growth of Staphylococcus					
	aureus, Salmonella					
	typhi, and Candida albicans in case					
	of pure PNIPAAm hydrogel					
	membranes without HA or					
	ampicillin. However, HA					
	incorporation or the loaded					
	ampicillin in membranes showed					
	unexpected easily microbial growth.					
	The fast release performance with					
	dual pH-thermo-sensitive hydrogels					
	were suggested as promising					
	materials for quick drug carrier in					
	the biomedical field.					
XPS and IR studies of plasma	The plasma polymerization of					
polymers layer deposited from Material science						
	modify polymer surfaces with 2018	https://doi.org/10.1016/j.opgysc.2019.07.160				
allylamine with addition of and plasma ammonia chemistry	primary amino groups. However,	https://doi.org/10.1016/j.apsusc.2018.07.160				
aninonia chemistry						
	this deposition process is					
Page 46 of 78 مستوى سرية الوثيقة: استخدام داخلي	Doc. No. (PUA-IT-P01-F07) C-V Template- نموذج					
Rev. (1) Date (13-9-2018) Document Security Level = Internal Use Issue no. (1) Date (13-9-2018)						

جامعة فاروس الاسكندرية

جامعة فاروس					
	NH ₂ groups of allylamine. To of NH ₂ groups plasma polyme added to the plathuge amount of incorporated polymer using but the yield groups was not side-reactions of Such NH ₂ groups surfaces are applications. The influence allylamine on amino groups using FT photoelectron	riginally present in compensate this loss in the deposited or layer ammonia was asma process. Indeed, of nitrogen could be into the plasma addition of ammonia in primary amino increased. Extensive were observed. up-enriched polymer interesting for biotof NH ₃ addition to the yield of primary was characterized IR-ATR, X-ray spectroscopy and nning calorimetry.			
One-step synthesis of silver nanoparticles embedded with polyethylene glycol as thin films	synthesized as and exposure to indirect) irradia The deposition Si-wafers was		7 https://doi.org/10.1080/0	01694243.2016.1259728	
مستوى سريـة الوثيقة: استخدام داخلي Page 47 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Internal Us	نمه د C-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-2019)			

جامعة فاروس الاسكندرية

جامعة فاروس						
	technique. The generating of Ag NP-					
	PEGs as colloids was examined by					
	UV-visible spectroscopy (UV-Vis)					
	and transmission electron					
	microscopy (TEM). The chemical					
	composition of the resulted					
	nanocomposites was evaluated by					
	Fourier transform infrared (FTIR)					
	and that of thin-film surfaces by X-					
	ray photoelectron spectroscopy.					
	Structure—property relationships of					
	Ag-PEG nanocomposites prepared					
	by heating were discussed in					
	dependence on the time of heating.					
	The UV–visible results confirmed					
	the successful synthesis of spherical					
	Ag NPs with absorption peaks at a					
	wavelength of $\lambda = 413$ nm for the					
	heating method and at $\lambda = 418$ as					
	well as 449 nm for direct and					
	indirect exposure to the sunlight.					
	Ag-PEG nanocomposite thin films showed excellent antimicrobial					
	activity. These results revealed that					
	the Ag-PEG nanocomposites thin					
	films can be used as potential					
	materials in biomedical applications.					
Tuned interactions of silver Material	The electrospray ionization (ESI)					
nanoparticles with ZSM-5	method was used for deposition of 2017	https://doi.org/10.1080/01694243.2017.1315910				
zeolite by adhesion-promoting plasma	thin films of poly(acrylic acid)					
chemistry	(PAA) on Cu/ZSM-5 (5 wt.% Cu)					
مستوى سرية الوثيقة: استخدام داخلي Page 48 of 78	Doc. No. (PUA-IT-P01-F07)					
Rev. (1) Date (13-9-2018) Document Security Level = Internal Use	Issue no.(1) Date (13-9-2018)					

جامعة فاروس الاسكندرية

جامعة فاروس				
poly(acrylic acid) deposited by	and Ag-Cu/ZSM-5 (1 wt.% Ag and			
electrospray ionization (ESI)	4 wt.% Cu) composites. For			
	comparative purposes, the ZSM-5			
	zeolite was synthesized under			
	hydrothermal conditions and loaded			
	with PAA under the same treating			
	conditions as the composites. This			
	method allowed the formation of			
	uniform polymer films of controlled			
	thickness on conductive substrates.			
	The structural characteristics were			
	characterized by X-ray			
	photoelectron spectroscopy,			
	Fourier-transform infrared			
	spectroscopy, atomic force			
	microscopy and X-ray diffraction			
	(XRD). The deposited PAA layer			
	over ZSM-5 acts as a common			
	dispersing and stabilizing agent			
	through coordination-driven guest-			
	templated polymer via interaction of			
	Ag ⁺ and Cu ²⁺ with carboxylic acid			
	groups, thus increasing and			
	controlling the adhesion and the			
	release of metallic species. A short			
	exposure to light and temperature			
	has reduced the metal ions to			
	Cu ⁰ and Ag ⁰ metallic nanoparticles.			
	The results of XRD analysis let			
	suggest that the interaction of Cu and			
	Ag with carboxylic groups of PAA			

Page	49 of 78
Rev. (2) Date	(30-11-2019)

جامعة فاروس الاسكندرية

حامعة فاروس

	جامعة فاروس						
			inhibits the formetallic silver samples were being potential as an toward the bacter as Staphylococcus pneumonia, Bacilla subtilis, Escherich coli and Pseudomaeruginosa as Gram-negative respectively. Asperfumigatus and Carangi were also Cu/ZSM-5 and nanocomposites con samples were specified to the subtilis of the subtilist of the subtilis of the subtilis of the subtilis of the subtilist of	rmation of large particles. These ng studied for their tibacterial agents erial strains such solus thia conas ram positive and bacteria,			
	Influence of Poloxmer on the Dissolution Properties of Mosapride and Its Pharmaceutical Tablet Formulation	Material science	antibacterial active. This work was an atherapeutic effication patient composition formulating immediate management of the composition of the comp		2017	10.21608/EJCHEM.2017.3685	
Re	ريـة الوثيقة: استخدام داخلي Page 50 of 78 =ev. (1) Date (13-9-2018) Document Security Level	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07 Issue no.(1) Date (13-9-201	'		

جامعة فاروس الاسكندرية

حامعة فادوس

			اروس	جامعة ف			
			croscarmellose so and sodium (Primojel) in Mosapride imme promoting disinte evaluated. The and the pre-composer characterize their respective so Chemical concrystallinity were FTIR and XRD, post compression thickness test, how testes and in vestudies were also				
	Ultra-Thin Films of Poly(acrylic acid)/Silver Nanocomposite Coatings for Antimicrobial Applications	Material science and plasma chemistry	poly(acrylic acid) with silver nanop but thin films (deposited usin deposition techn mixture of sod (NaBH ₄) and as were utilized to ions to generate A matrix. Moreover was used to stab colloids. The obta	tonly colloids of (PAA) embedded particles (Ag-NPs) 10 nm) also were ng electrospray nique (ESD). A lium borohydride corbic acid (AA) reduce the silver ag-NPs in the PAA resolumnticitrate policy the prepared ained colloids and eterized using UV-	2016	https://doi.org/10.1155/2016/7489536	
Re	رية الوثيقة: استخدام داخلي Page 51 of 78 - Document Security Level Document Security Level	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-20)	•		

جامعة فاروس الاسكندرية

	visible, transmission electron microscopy (TEM). UV-Vis results reveal that an absorption peak at 425 nm was observed in presence of PAA-AgNO ₃ -AA-citrate-NaBH ₄ . This peak is attributed to the well-known surface plasmon resonance of the silver bound in Ag-NPs, while the reduction was rendering and/or inhibiting in absence of the AA and citrate. FTIR spectroscopy was used to study the mechanism of the reaction process of silver nitrate with PAA. TEM images showed the well dispersion of Ag-NPs in the PAA matrix with average particle size of 8 nm. The antimicrobial studies showed that the Ag-NPs embedded in the PAA matrix have proven to have a significant antimicrobial	
	have a significant antimicrobial activity against <i>E. coli</i> , <i>B. subtilis</i> , and <i>C. albicans</i> .	
Reaction of CO ₂ Gas with (radicals in) Plasma-Polymerized Acrylic Acid (and Formation of COOH-Rich Polymer Layers) Material sc and plass chemist	In contrast to most of the existing literature on plasma polymerization of acrylic acid (AA), not only the ence chemical structure and film thickness of the deposits were 2016	https://doi.org/10.1002/ppap.201500128
مستوى سريـة الوثيقة: استخدام داخلي Page 52 of 78 Rev. (1) Date (13-9-2018) Document Security Level = Internal Use	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)	

جامعة فاروس الاسكندرية

		جامعه فاروس			
		biomedical and electron applications. Therefore, acracid/CO ₂ polymer films with thickness of ca. 150 nm with deposited in the pulsed plast regime onto polyethylene aluminum. Their structure—proper relationships were studied dependence on the mixture ratio acrylic acid monomer and CO ₂ gas on regularity and functionality plasma-deposited poly(acrylic ac (PAA) was studied in detail us bulk-sensitive (FTIR) as well surface-sensitive methods, such X-ray photoelectron spectroscor Results obtained show, in prese of a small amount of CO ₂ gas with the acrylic acid plasma, a structur PAA with high concentration COOH groups was estimated. polymer network is obtained with increasing abundance of branc groups for AA/CO ₂ with increasing cO ₂ gas in the mixture.	ere ma and rty in of as. the of id) as as as py. nce hin e of A an need ang		
		groups for AA/CO ₂ with increas CO ₂ gas in the mixture.	ing		
Plasma polymerized allyl alcohol/O ₂ thin films embedded with silver nanoparticles	Material science and plasma chemistry	of <i>anti</i> -bacterial <u>polymer</u> <u>coating</u> with embedded silver <u>n</u>	2016 his	https://doi.org/10.1016/j.tsf.2016.08.045	
ريـة الوثيقة: استخدام داخلی Page 53 of 78 Rev. (2) Date (30-11-2019) Document Security Level = I	-	Doc. No. (PUA - C-V Template: نموذجSsue no.(2) Date	· ·		

جامعة فاروس الاسكندرية

	جامعة فاروس					
		was deposited polymerization of Then, these plasm were impregnations by dipping silver nitrate. Ag+ was reduced itself and more dipping into of sodium boron of O2 gas to the monomer was us concentration of Cin the layer and fixation of distributed silver thus produced reduced grown negative Escherical The morphology was studied by Microscopy and Microscopy. Cherin the whole layer of films were in	using the plasma allyl alcohol. In a polymer layers ated with silver into a solution of Subsequently, by the polymer be completely by a solution hydride. Addition the allyl alcohol ed to increase the of functional groups of to improve the homogeneously mano-particles. The films have been			
Adsorption of Cadmium Ions onto Zeolite-A prepared from Page 54 of 78 مریة الوثیقة: استخدام داخلی	Water treatment	Egyptian kaolin t	en prepared from to remove divalent	2016	10.21275/v5i7.ART2016515	
مریه او بوهه: استخدام داخلی Rev. (1) Date (13-9-2018) Document Security Level = Int	=	نموذجC-V Template	Issue no.(1) Date (13-9-2018			

جامعة فاروس					
Egyptian Kaolin using	cadmium ion from wastewater. The				
Microwave Technique	synthesized zeolite was				
	characterized by X-ray diffraction				
	(XRD) and scanning electron				
	microscopy (SEM). A batch				
	technique was employed as a				
	function of temperatures, contact				
	time and pH of the solution. Zeolite-				
	A morphology was observed by				
	SEM analysis, and it showed well-				
	defined crystals slightly different				
	sized crystals of the same cubic				
	shape. Results revealed that the				
	optimum conditions of the				
	adsorption process are: zeolite dose=				
	0.25g in 25 mL of Cd(II) with				
	contact time of 140 min, 333 K and				
	pH 7.5. Two equations, namely				
	pseudo-first order and pseudo-				
	second order have been used to				
	determine the kinetics of removal				
	process. The collected kinetic data				
	showed that pseudosecond order				
	equations controls the adsorption.				
	Chemisorption process and				
	Langmuir isotherm proved best				
	fitting to the experimental data. The				
	adsorption mechanism was based on				
	cation exchanges of Cd+2 ions				
	present in wastewater and the				
	available Na+ ion.				

Page 55 of 78	
Page 55 of 78 Rev. (2) Date (30-11-2019)	

Rev. (1) Date (13-9-2018)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

جامعة فاروس

		جنب دروس		
SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF POLYMER NICKEL (II) COMPLEX	Material science	4-vinyl pyridine nickel complex containing polymerizable vinyl group, prepared by condensing (4:1 molar ratio) of 4-vinyl pyridine with Nickel chloride, then polymerized with methyl methacrylate at 70 °C using AIBN as initiator. Metal complex and polymer metal complex have been characterized by elemental analyses, molar conductance, IR, 1H-NMR, Mass spectra and thermal analyses (DTA and TGA). Conductivity measurement reveals the nonelectrolytic nature of the complex. This confirms that, the anion is coordinated to the metal ion. The IR reveal the metal ion is coordinated via the nitrogen atom of 4-VP. Nickel complex and polymer nickel complex have been tested invitro against number of tumor and number of microorganisms in order to assess their anti tumor and antimicrobial properties. The antimicrobial activity was observed by compounds VP-Ni and MMA-VP-Ni under the screening conditions. The activity against HCT-116 cells was detected for compound VP-Ni (with IC50 value)	2016	SYNTHESIS-CHARACTERIZATION-AND-BIOLOGICAL-ACTIVITY-OF-POLYMER-NICICOMPLEX.pdf (researchgate.net)
ية الوثيقة: استخدام داخلي Page 56 of 78	مستوی سر	Doc. No. (PUA-IT-P01-F0 C-V Template نموذج	'	

Issue no.(1) Date (13-9-2018)

Rev. (2) Date (30-11-2019)

Document Security Level = Internal Use

جامعة فاروس الاسكندرية

			جامعة فاروس			
•			9.8±0.6 μg/ml), compared with reference standard (24.6±0.3 μg/ml) followed by MMA-VP-Ni (48.3±1.5). In conclusion, this study highlighted the synthesis of polymer nickel complex, and proved the promising biological activity of the synthesized compounds.			
	SYNTHESIS AND BIOLOGICAL ACTIVITIES OF POLYMER-IRON (III) COMPLEX BASED ON 4- VINYL PYRIDINE	Material science	Reaction of Fe (III) with 4-vinyl pyridine in non aqueous medium led to the formation of metal complex. This complex reacted with methyl methacrylate by using azobisisobutyronitrile (AIBN) as initiator to form the polymer metal complex. This metal complex and polymer metal complex have been characterized by elemental analyses, molar conductance, IR, 1H-NMR, Mass spectra and thermal analyses (DTA and TGA). The molar conductance of the complex indicating that, the complex is not electrolytes. This confirms that, the anion is coordinated to the metal ion. The IR data show that the metal ion is coordinated via the nitrogen atom of 4-VP. The metal VP-Fe complex and Polymer Fe Complex have been tested in vitro against number of tumor and number of	2016	SYNTHESIS-AND-BIOLOGICAL-ACTIVITIES POLYMER-IRON-III-COMPLEX-BASED-ON-4 PYRIDINE.pdf (researchgate.net)	
	بية الوثيقة: استخدام داخلي Page 57 of 78	مستوی سر	Doc. No. (PUA-IT-P01-	*		

Issue no.(2) Date (30-11-2019)

جامعة فاروس الاسكندرية

			جامعة فاروس				
			microorganisms in order to assess their anti tumor and antimicrobial properties. Interestingly, the tested compound MMA-VP-Fe also exhibited highest tendency to inhibit Gram positive bacteria than Gram negative bacteria along with its activity against the tested filamentous fungi (Aspergillus fumigatus). Good antitumor activity against HCT-116 cells was detected for compound VP-Fe with IC50 value of 17.8±1.3, compared with reference standard (24.6±0.3 μg/ml) followed by MMA-VP-Fe (88.3±1.2 μg/ml). The obtained results				
	Poly(vinyl alcohol)-hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and <i>in vitro</i> Bio-Evaluations	Polymer for biomedical applications	μg/ml). The obtained results revealed the moderate biological activities of the synthesized VP-Fe complex and polymer Fe complex. Physically crosslinked poly(vinyl alcohol)-hyaluronic acid (PVA-HA) hydrogel membranes composed of different amounts of HA were prepared by freeze-thawing (F-T) method. F-T cycle was repeated for three consecutive cycles. HA was chosen and routinely utilized in the local treatment of chronic wounds, because of its advantages as, HA is endogenous and biodegradable polymer. Physicochemical	2015	https://doi.org/10.5935/0103-5053.20150115		
Re	رية الوثيقة: استخدام داخلي Page 58 of 78 ا = Document Security Level (13-9-2018)	-	Doc. No. (PUA-IT-P01-F	. ,			

جامعة فاروس الاسكندرية

جامعة فاروس

properties of PVA-HA membranes such as, gel fraction (GF), swelling, mechanical properties, hydrolytic degradation and in vitro bioevaluation tests were investigated. Results revealed that introducing HA into PVA structure affected significantly the physicochemical properties of membranes than the pristine PVA, because of its crosslinking interaction with PVA. With the increase of HA content in PVA hydrogel membranes, GF and mechanical stability of PVA-HA membranes decreased. However, the swelling behavior, mechanical flexibility, protein adsorption and hydrolytic degradation of PVA membrane increased. The HA content < 20% in PVA hydrogels showed high cell viability (%) and no toxicity was observed using microculture tetrazolium assav (MTT-assay). However, less cell viability was determined with high HA incorporation. PVA-HAampicillin free showed antimicrobial activity against Candida albicans as a result of HA presence. Thus, ampicillin-loaded wound dressing with PVA-HA membranes could be

جامعة فاروس الاسكندرية

حامعة فادوس

		اروس	جامعة فا,		
HAP for Fuel Cell Application:	olymer for fuel cells applications	used as promising evaluated for would this work explored properties alternanocomposite in based on polyvir blended with hyall and hydroxyapinanofiller. The synthesized by method, where I modified with ort (OPA) or sulphut epichlorohydrin employed as chee Physicochemical composite	es the synthesis and cration of new membrane system nyl alcohol (PVA) aluronic acid (HA) patite (HAP) as membranes were solution-casting PVA was initially ethophosphoric acid and then (EPI) was emical crosslinker.	2015	https://doi.org/10.1016/S1452-3981(23)06747-0
PVA on Membrane Properties applications		mechanical stability were estimated, depending on PVA modifier agent alteration. Results revealed that the PVA-modifier agent type influenced sharply on most membrane properties. For example, the swelling ability of PVA-HA-HAP composite membranes was reduced apparently with increasing H ₂ SO ₄ amount as used for PVA modification, unlike it was increased with the used amount of OPA for the			
قوى سرية الوثيقة: استخدام داخلي Page 60 of 78 Document Security Level = Interna (1) Date		نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-201 8)	-	

جامعة فاروس الاسكندرية

		روس			
		properties were increasing the and certain extent, we deteriorated considerable and addition of heamounts of OPA modification. The electrochemical properties and HAP compositions and HAP incorporations on the experimental performance of dispersions.	embranes. Both and modeled iffernet membranes be compared and		
Acid): Influence of Pressure and Dielectric Properties	Material science and plasma chemistry	were deposited polymerization of and inorganic structure—property the deposited acrewere studied in a monomer press	y relationships of cylic acid polymers dependence on the sure by various probes. The surface	2015	https://doi.org/10.1007/s11090-014-9603-8
ى سرية الوثيقة: استخدام داخلي Page 61 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Inter	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-201		

جامعة فاروس الاسكندرية

and bulk properties of the plasma
deposited films were investigated by
X-ray photoelectron spectroscopy,
attenuated total reflection infrared,
and broad band dielectric
spectroscopy. The experimental
infrared frequencies of PAA films
are compared with those predicted
from quantum mechanical
calculation. The concentration of the
COOH groups in the film (stored in
ambient air) decreased by about
15 % compared to the as-prepared
sample. The plasma deposited PAA
probably form a highly branched
product. However, the dielectric
measurements show that in addition
to the hydrogen bonds, self
condensation process was able to
hinder the localized fluctuation as
well. These processes lead to form a
cross-linked network polymer film.
Nevertheless, a low energy is
sufficient to break these processes
during heating at atmospheric
pressure. Therefore, homogenized
samples with free branches
(functional group) were obtained
after a first heating with structures
close to conventional polymerized

جامعة فاروس الاسكندرية

			جامعة فاروس		
			acrylic acid. Thus, a thermally stable product was obtained.		
	Influence of water addition on the structure of plasma-deposited allyl alcohol polymer films	Material science and plasma chemistry	One hundred and fifty nanometre thick polymer films made of allyl alcohol and H ₂ O addition were deposited onto aluminium substrates using the radio-frequency (rf) pulsed plasma mode. The structure—property relationships of polymer films were studied in dependence on the precursor ratio allyl alcoholwater. Both the regularity of structure and composition of such thin films in comparison to chemically polymerized allyl alcohol were investigated using by bulk-sensitive Fourier transform infrared spectroscopy (FTIR) in the spectral range of 4000–500 cm ⁻¹ as well as surface-sensitive X-ray photoelectron spectroscopy (XPS). The intention of this work was to increase the yield in OH groups by addition of water to the allyl alcohol precursor. For an unambiguous identification of the functionality of the deposited films, the OH groups were labelled with trifluoroacetic anhydride and subsequently measured by XPS as well as quantitatively by FTIR. As expected,	2015	https://doi.org/10.1080/01694243.2015.1011367
Rev.	(2) Date (30-11-2019) Document Security Level = I	-	Ssue no.(2) Date (30-11-	'	

جامعة فاروس الاسكندرية

		جامعه فاروس		
		the O/C ratio grew with increasing water admixture by oxidation of both the plasma polymerized allyl alcohol layer to preferably aldehyde and/or carboxylic acid groups. In contrary, the concentration of OH groups in the deposited polymer film decreases dramatically with increasing admixture of water to the allyl alcohol plasma. It has been shown that the additional water has produced preferably higher oxidized C-O _x species with two or three C-O bonds. This fits also very well with the observation that almost no deuterium is introduced into the surface of plasma polymer if D ₂ O was added instead of H ₂ O.		
SILVER/POLYETHYLENE GLYCOL NANOCOMPOSITE THIN FILMS AND ITS BIOLOGICAL APPLICATIONS	Polymer for biomedical applications	The synthesis of silver nanoparticles with different sizes and concentrations was carried out using NaBH4 as a reducing agent and polyethylene glycol (PEG) as a stabilizer. The thin films of PEG embedded with Ag nanoparticles (Ag NPs) were deposited by electrospray deposition technique (ESD) and the morphology of subsequent prepared films was studied by AFM. Structure-property relationships of the colloid and	2015	322470403.pdf (core.ac.uk)
رية الوثيقة: استخدام داخلي Page 64 of 78 Rev. (1) Date (13-9-2018) Document Security Level =	-	Doc. No. (PUA-IT-P01-F0 C-V Template نموذجissue no.(1) Date (13-9-20		

جامعة فاروس الاسكندرية

		<u>ي</u> س	جامعة فارو		
		subsequent film	s were discussed in		
		dependence on t	the concentration of		
		NaBH4. The sy	ynthesized Ag/PEG		
		nanocomposite	solution was		
		characterized	by UV-visible		
		spectroscopy	and Transmission		
		electron mic	roscopy (TEM).		
		Chemical compo	osition in the whole		
		and on the sur	face of films were		
		investigated by	Fourier transform		
		infrared (ATR	R-IR) and X-ray		
		photoelectron r	microscopy (XPS),		
		respectively. Th	e UVvisible results		
		indicate to the fo	ormation of spherical		
			the absorption peak		
			wavelengths around		
			images showed the		
			of Ag NPs in the		
			th average particle		
			. Furthermore, the		
			activity of the		
			vas studied. The Ag		
			from the polymer		
			o have a significant		
			activity against S.		
		-	Subtilis, E. Coli, and		
	DOLLAR DOMESTIC	A. Fumigates.			
	POLYELECTROLYTE Polye	mer for fuel Novel compo		POLYELECTROLYTE-NANOCOMPOSITE-	ET IE
	NANOCOMPOSITE 1 OIY		lending hyaluronic 2015	MEMBRANES-BASED-ON-PVA-HA-HAP-FOR	-FUE
	MEMBRANES BASED ON	milestions '	modified polyvinyl	<u>CELL-APPLICATIONS-SYNTHESIS-AND-</u> APPLICATION.pdf (researchgate.net)	
	PVAHA-HAP FOR FUEL ^{ap}	alconoi (PVA)	and hydroxyapatite	APPLICATION.pdf (researchgate.net)	
	Page 65 of 78 مستوی سریة الوثیقة: استخدام داخلی Page 65 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Internal Use	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-2019)		
I	Document Security Level = Internal Use	<u>-</u>	155ue 110.(2) Date (30-11-2013)		1

جامعة فاروس الاسكندرية

جامعة فاروس

CELL APPLICATIONS:
SYNTHESIS AND
APPLICATION

as nano-filler (HAP), followed by ex-situ crosslinking with epichlorohydrin (EPI) to achieve the desired chemical and mechanical stability, are reported for use as nanocomposite polyelectrolyte membranes (PEM) in direct methanol fuel cell (DMFC). In this work, PVA-HA-HAP membranes are synthesized by solution-casting method using EPI as chemical crosslinker. PVA is first modified using orthophosphoric acid (OPA) for creating the ion conducting property. Different concentrations of HA, HAP and OPA modifier agent are used. Some physicochemical properties e.g. water uptake, gel fraction, mechanical and thermal properties were determined as function of varied membrane components. In addition, PVA-HAmembranes HAP molecular structure is verified by FTIR, while morphological changes due to addition of HAP is investigated by SEM. Results revealed that addition HAP and modification of PVA with OPA in different contents affected sharply on physicochemical and electro-chemical properties

جامعة فاروس الاسكندرية

حامعة فادوس

			روس	جامعة فا			
			obtained membranes. It addition of HA swelling ability thermal and med of PVA-HA-HA pristine PVA- Whereas, both tl PVA with OPA fillers incorporat conduction, we electrochemical improvement suc	PVA-HA-HAP was noticed that AP decreased the and improved the chanical properties P, as compared to HA membranes. he modification of and HAP nano- tion created ionic			
	Comparative Studies for Adsorption Processes of Transition Element Cu(II) Ions by Macroporous Cation Exchange Resin	Water treatment	In this work the activate are carried out of aqueous solution macroporous cativates. (AMBERSEP 2) temperatures. parameters such a metal ions, to presence of acid obtained adsorption in activate and in the presence of acid obtained adsorption from the publinin-Radushk models. The effect the adsorption is a solution of the property of the activate of	were studied. The on data fitted on the of Langmuir, mkin-Pyzhev and	2015	297-306.pdf (curresweb.com)	
Rev	رِية الوثيقة: استخدام داخلي Page 67 of 78 = Document Security Level (2).	-	نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-201			

جامعة فاروس الاسكندرية

حامعة فاروس

		جامعة فاروس		
	thermodynaming AG) were determined the efficiency copy medium using Morever, the emodels were Langmuir, Free D-R isotherm correlation indicates the emodel with a of copper ions	apacity. Additionally, it parameters (ΔΗ, ΔS, ermined. The removal per ions from aqueous such resin was 98.7%. experimental isotherm evaluated for the eundlich, Temkin and ms. Therefore, the coefficient (R2) following order to fit dsorption mechanism (Cu+2) onto the resin > D-R > Temkin >		
SYNTHESIS AND CHARACTERIZATION OF POLY(VINYL ALCOHOL)- HYALURONIC ACID BLENDED HYDROGEL MEMBRANES	Poly(vinyl a hydrophilic soluble . It biomedical applications, or such as: carcinogenic, characteristics processing. Playdrogel mendifferent amout (HA) blend prepared by from This freezing repeated for	polymer and water is used in many and pharmaceutical due to its advantages non-toxic, non-and biodegradable with the ease of hysically cross-linked abranes composed of ints of hyaluronic acid with (PVA) were eeze—thawing method. Thawing cycle was three consecutive erties of (PVA–HA)	10.21608/AJPS.2014.6965	
ى سرية الوثيقة: استخدام دلخلي Page 68 of 78 Document Security Level = Inter	نمه د C-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)		

جامعة فاروس الاسكندرية

حامعة فاروس

	جامعة فاروس		
	,	chanical trength, tion and were using of son, the sh and (PVA-s were ith the welling, and the VA-HA were ydrogel mys in S), the VA-HA ranged rding to	
Acrylic Acid and Styrene: Part II Variation of the Compromer	cal science plasma emistry Copolymers of acrylic ac styrene (AA/S) were preparation technistry Copolymers of acrylic ac styrene (AA/S) were preparation technistry Their structure—relationships were studing dependence on the comonom Both, the regularity of the sand the composition of the styrene (AA/S) were preparation to acrylic	hrique. broperty ed in er ratio. tructure 2013 https://doi.org/10.10	02/ppap.201200110
مستوى سرية الوثيقة: استخدام داخلي Page 69 of 78 Rev. (2) Date (30-11-2019) Document Security Level = Internal Use	C V Tomplator) and	p. (PUA-IT-P01-F07) 2) Date (30-11-2019)	

جامعة فاروس الاسكندرية

			روس	جامعة فار		
			copolymer films by bulk-sensi spectroscopy, FT scanning calorin surface-sensitive ray photoelectr (XPS). For identification of the deposited groups were derivatization wi and subsequent as well as by analysis of the result, the conce groups on the sur is increasing with in precursor m monotonous way dependence	were investigated itive (dielectric TR, and differential metry) as well as methods such as X-ron spectroscopy an unambiguous the functionality of films the COOH estimated by ith trifluoroethanol XPS measurement the quantitative FTIR data. As a entration of COOH face and in the bulk in the fraction of AA ixture in a non-robut similar to the obtained by		
			conventional polymerization.	free radical		
polystyrene fil Ar plasma	behavior of thin ms on exposure to and its emitted liation	Material scier and plasma chemistry	polystyrene (PS) argon plasma for several minutes. either in direct plasma or was direct plasma cor different cutoff	ms of amorphous of were exposed to r a few seconds to The PS film was contact with the shielded from the intact by filters with wavelengths in the on or by a Faraday	2013	https://doi.org/10.1080/01694243.2012.705528
Page 70 of 78 Rev. (1) Date (13-9-2018)	ريـة الوثيقة: استخدام داخلي = Document Security Level		نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-201)	*	

جامعة فاروس الاسكندرية

جامعة فاروس

cage (FC) made from metal mesh to prevent the impinging of charged species. Only energy-rich neutrals and plasma radiation may be operative in presence of the FC. lithium fluoride (LiF) filter protects the sample from direct contact with the plasma. Wavelengths of plasma radiation shorter than c. 105 nm (\approx 11.8 eV) were cut off. Glass filters made of fused SiO₂ have a cutoff

 \approx 175 nm completely the vacuum UV radiation of plasma (ca. $175 \text{ nm} \approx 7.0 \text{ eV}$). These energies are sufficient to produce C-C, C-H bond scissions in case of direct Ar plasma exposure and Ar plasma exposure with use of the LiF filter. Only quartz glass shielding did not produce significant effects on the polymer surface in comparison to the reference PS, either in surface energy or O/C ratio or in IR spectra. Oxygen plasma has worked most aggressive and had etched the PS film, thus establishing a steady state between introduction of new oxygen functionalities and polymer etching. Ar plasma exposure produces also oxidation and etching of the polymer

جامعة فاروس الاسكندرية

جامعة فاروس

films as the oxygen plasma. Using of a FC during Ar plasma exposure or the LiF filter a slightly weaker oxidation was observed. The pulsed plasma polymerization of allyl alcohol was employed under the aspect of maximal retention of OH groups and the formation of a regular polymer structure. It should be noted that earlier investigations on plasma polymers deposited from allyl alcohol did not show extensive postplasma addition of oxygen and water vapor from ambient air during storage, measuring the elemental O/C ratio by means of X-ray photoelectron spectroscopy (XPS).The identification of OH groups in the plasma polymerized polymer using FTIR spectroscopy was such an indicator for			روس	جامعه فار		
fragmentation. The peak area of OH groups in the film which was stored was increased by about 20% compared to that measured ("in situ"). These phenomenons reflected that moisture and O ₂ in air played an	in) Plasma Polymerized Allyl Alcohol (and Formation of OH-	and plasma	films as the oxyge a FC during Ar I the LiF filter oxidation was ob. The pulsed plas of allyl alcohol we the aspect of material of the oxygen and regular polymer be noted that ear on plasma polymallyl alcohol did postplasma addit water vapor from storage, measure O/C ratio by photoelectron (XPS). The identification groups in the propolymer using I was such an fragmentation. The groups in the film was increased compared to the situ"). These pherotoelectron that moisture and	plasma exposure or a slightly weaker below the served. Ima polymerization was employed under aximal retention of the formation of a structure. It should arlier investigations hers deposited from not show extensive tion of oxygen and ambient air during ing the elemental means of X-ray spectroscopy in indicator of OH conditions are a spectroscopy in indicator for the peak area of OH in which was stored by about 20% that measured ("in the momenons reflected if O2 in air played an	2013	https://doi.org/10.1021/jp406186x
that moisture and O ₂ in air played an important role in scavenging the free radicals. The addition of water and more specifically chemical bonding of OH of water in the deposited Page 72 of 78 Rev. (1) Date (13-9-2018) Doc. No. (PUA-IT-P01-F07) Issue no. (1) Date (13-9-2018)	-ريـ -ريـ		important role in radicals. The add more specifically of OH of water	scavenging the free dition of water and y chemical bonding r in the deposited		

جامعة فاروس الاسكندرية

حامحة فابم

جامعة فاروس					
		indicator for fragmentation, por and the remember responsible for Moreover, measurements should be deposited films stable but under the chemical reaction.	may serve as an for monomer oly recombination, maining radicals film formation. the dielectric ow that the plasma are not thermally rgo a postplasma n during heating, on kinetics depends		
Structure of Plasma-Deposited Copolymer Films Prepared from Acrylic Acid and Styrene: Part I Dependence on the Duty Cycle	Material science and plasma chemistry	Copolymers of styrene (AA/S) pulsed plasma de structures wer dependence on the for a fixed comporesult, low value preserve the structure in the plasma de while high DC degree of fragmer regular structure. Copolymerisation method to finish definite number of it is necessary to the chemical natue properties of the	acrylic acid and were prepared by eposition and their re studied in the duty cycle (DC) position of 1:1. As a these of DC doses of the doses of DC doses of DC doses of DC doses of DC doses of the doses of DC doses of the doses of the dose of t	2012	https://doi.org/10.1002/ppap.201100117
Page 73 of 78 سرية الوثيقة: استخدام داخلي Rev. (2) Date (30-11-2019) Document Security Level = Int		نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(2) Date (30-11-2019))	

جامعة فاروس الاسكندرية

	جامعه فاروس					
			different methods was employed for			
			the characterization of thin plasma			
			copolymer films (FTIR, dielectric			
			spectroscopy, differential scanning			
			calorimetry, X-ray photoelectron			
			spectroscopy (XPS)). Special			
			attention was paid on the			
			unambiguous identification of			
			COOH groups at the surface after			
			derivatization with trifluoroethanol			
			by XPS and in the volume by FTIR.			
			The glass transition temperature of			
			the copolymer system is lower than			
			that for the both plasma deposited			
			homopolymers and increases with			
			the DC in difference to plasma			
			deposited poly(acrylic acid). The			
			dielectric measurements showed that			
			the plasma deposited films were not			
			thermally stable and underwent an			
			undesired post-plasma chemical			
			reaction. The results obtained by			
			dielectric spectroscopy are discussed			
			in detail in comparison with the data			
			from FTIR and XPS measurements.			
			Polystyrene (PS) spin coated thin			
	Surface and Bulk Structure of	Material science	films were modified by O ₂ and Ar			
	Thin Spin Coated and Plasma-	and plasma chemistry	plasma as well as by UV irradiation	PS 2012	https://doi.org/10.1007/s11090-012-9372-1	
	Polymerized Polystyrene Films		treatments. The modified PS			
		Chemistry	samples were compared with plasma			
			polymerized and commercial			_
	رية الوثيقة: استخدام داخلي Page 74 of 78	مستوی سـ	Doc. No. (PUA-IT-P01-	·		
Rev.	(1) Date (13-9-2018) Document Security Level =	Internal Use	Issue no.(1) Date (13-9-2	2018)		J]

جامعة فاروس الاسكندرية

جامعة فاروس					
		polystyrene. The effects of plasma (O ₂ and Ar) and UV irradiation treatments on the surface and the bulk properties of the polymer layers were discussed. The surface properties were evaluated by X-ray Photoelectron Spectroscopy and Contact angle measurements and the bulk properties were investigated by FTIR and dielectric relaxation spectroscopy. As a result only one second treatment time was sufficient to modify the surface. However, this study was also dedicated to understand the effect of plasma and plasma irradiation on the deposited layers of plasma polymers. The dielectric measurements showed that the plasma deposited films were not thermally stable and underwent an undesired post-plasma chemical oxidation.			
Structure property relationship of plasma polymer films - Plasma polymerization, plasma treatment and characterization methods	Material science and plasma chemistry		2012	OPUS 4 Structure property relationship of plasma films - Plasma polymerization, plasma treatment a characterization methods (kobv.de)	_
Structure of Plasma-Deposited Poly(acrylic acid) Films	Material science and plasma chemistry	Poly(acrylic acid) films with a thickness of about 150 nm were deposited using a pulsed plasma onto	2011	https://doi.org/10.1002/ppap.201000108	
رِيةَ الْوِثْيَقَةُ: استَخدام داخلي Page 75 of 78 [Rev. (2) Date (30-11-2019) Document Security Level	-	Doc. No. (PUA-IT-P01- C-V Template: نموذ Ssue no.(2) Date (30-11-			

جامعة فاروس الاسكندرية

aluminum and glass. The
structure/property relationships of
these samples were studied in
dependence to the duty cycle (DC)
of the plasma by a broad
combination of different techniques
and probes. For the first time,
volume sensitive methods (FTIR,
dielectric spectroscopy, and
differential scanning calorimetry)
are combined with surface analyses
i.e. XPS. For an unambiguous
identification of COOH groups by
XPS, derivatization with
trifluoroethanol was accomplished.
Quantitative FTIR investigations
give qualitatively a dependence of
the concentration of COOH groups
upon DC similar to that given by
XPS investigations. The observed
differences are discussed
considering the different analytical
depths of both methods. The
dielectric measurements reveal that
the structure of the plasma deposited
films is different from that of the
bulk material. Moreover, these
measurements show also that the
plasma deposited films are not
thermally stable but undergo a post
plasma chemical reaction during

جامعة فاروس الاسكندرية

Structure-Property Relationship of Thin Plasma Deposited Poly(allyl alcohol) Films Material science and plasma chemistry Material science and probes. For the first time volume sensitive methods (FTIR and dielectric spectroscopy) are combined with surface analytics by employing XPS for that system. FTIR spectroscopy gives qualitatively the same dependence of the concentration of the OH groups on DC like XPS. The observed differences are discussed considering the different analytical depths of both the methods. The dielectric measurements show that
thickness of about 150 nm were deposited by pulse plasma polymerization onto different substrates (inorganic and organic). The structure/property relationships of these samples were studied in dependence on the duty cycle (DC) of the plasma by a broad combination of different techniques and probes. For the first time volume sensitive methods (FTIR and dielectric spectroscopy) are combined with surface analytics by employing XPS for that system. FTIR spectroscopy gives qualitatively the same dependence of the concentration of the OH groups on DC like XPS. The observed differences are discussed considering the different analytical depths of both the methods. The
the plasma deposited films are not thermally stable but undergo a post plasma chemical reaction during heating. The results obtained by dielectric spectroscopy are discussed

Page	77 of 78
Page Rev. (2) Date	(30-11-2019)

جامعة فاروس الاسكندرية

			in detail with the data from FTIR and XPS measurements.			
	Plasma-Initiated Polymerization	Material science				
	and Copolymerization and	and plasma		2011	<u>Thesis 13. 10. 2011 (tu-berlin.de)</u>	
	Analysis of Products	chemistry				