

جامعة فاروس

Publications Template

#	Research Title	Field	Year of Public ation Publis hing	Publishing Link "URL"
1	Data hiding in a digital cover image using chaotic maps and LSB technique	Data hiding	2017	https://ieeexplore.ieee.org/abstract/document/8275302
2	ArMTFr: a new permutation-based image encryption scheme	Data encryp tion	2019	https://www.inderscienceonline.com/doi/abs/10.1504/IJESDF.201 9.096516
3	Sustainable Energy in Telecommunications and IT Industries: Principles and Solutions	Sustai nable energy	2021	https://iopscience.iop.org/article/10.1088/1757- 899X/1051/1/012025/meta
4	Novel breast cancer classification framework based on deep learning	Deep learnin g	2020	https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2020.0122
5	New video encryption schemes based on chaotic maps	Video encryp tion	2019	https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5250
6	Cryptography and steganography	Data encryp tion and hiding	2018	The Journal of the Institute of Telecommunications Professionals (ITP)

Page 1 of 5	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Rev. (1) Date (13-9-2018)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

7	An Improved Image Encryption Scheme Based on Pixels Permutation and Fractional Wavelet Transform	Image encryp tion	2017	https://pdfs.semanticscholar.org/1947/11d943cec9239aab128699 789900da44713e.pdf
8	Deep learning in mammography images segmentation and classification: Automated CNN approach	Deep learnin g	2021	https://www.sciencedirect.com/science/article/pii/S111001682100 2027
9	<u>Underwater localization system based on visible-light communications using neural networks</u>	Optics	2021	https://www.osapublishing.org/ao/abstract.cfm?uri=ao-60-13-3977
1 0	Prostate cancer detection based on deep convolutional neural networks and support vector machines: a novel concern level analysis	Deep learnin g	2021	https://link.springer.com/article/10.1007/s11042-021-10849-5
1 1	Deep learning design for benign and malignant classification of skin lesions: a new approach	Deep learnin g	2021	https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=skin +cancer+wessam+M.Salama&oq=Skin
1 2	A new crypto-stego technique for hiding encrypted gray scale image in color images	Crypto -Stego Image	2021	10-12 SEPTEMBER 2021 Atatürk University, ERZURUM, TURKEY Image in Color Images
1 3	Lung Images Segmentation and Classification Based on Deep Learning: A New Automated CNN Approach	Deep learnin g	2021	https://iopscience.iop.org/article/10.1088/1742- 6596/2128/1/012011/meta
1 4	Indoor Localization Based on Visible Light Communication and Machine Learning Algorithms	Optics	2022	Opto-Electronics Review
1 5	A Novel Framework for Brain Tumor Detection Based on Convolutional Variational Generative Model	Deep learnin g	2022	Multimedia Tools and Applications
1 6	Lung Cancer Images Segmentation and Classification Based on Deep Learning: A New Automated CNN Approach	Deep learnin g	2022	6th International conference on Advanced Technology and Applied Sciences (ICaTAS'2021)

Page 2 of 5	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Rev. (1) Date (13-9-2018)	Document Security Level = Internal Use	نمو دجC-V Template	Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

1 7	Chaotic Maps Based Video Encryption: A New Approach	Video encryp tion	2022	6th International conference on Advanced Technology and Applied Sciences (ICaTAS'2021
1 8	A Generalized Framework for Lung Cancer Classification Based on Deep Generative Models	Deep learnin g	2022	Multimedia Tools and Applications
1 9	A New Automated Deep Learning Approach for Classification of Malignant Melanoma and Benign Skin Lesions	Deep learnin g	2022	Multimedia Tools and Applications
2 0	Lung CT Image Segmentation: A Generalized Framework Based on U-Net Architecture and Preprocessing Models	Deep learnin g	2021	31st International Conference on Computer Theory and Applications (ICCTA 2021)
2 1	Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images	Deep learnin g	2022	https://www.sciencedirect.com/science/article/pii/S1674862X2200 0143
2 2	Enhanced Deep Learning Based Channel Estim ation for Indoor VLC Systems	Optics based on deep learnin g	2022	Optical and Quantum Electronics.
2 3	VLC Localization: Deep Learning Models by Kalman Filter Algorithm Combined with RSS	Optics based on deep learnin g	2022	Optical and Quantum Electronics.

п				
	Page 3 of 5	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
	Rev. (2) Date (30-11-2019)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(2) Date (30-11-2019)

جامعة فاروس الاسكندرية

2	Deep Learning-Based Spam Image Filtering	Deep	2023	https://www.sciencedirect.com/science/article/pii/S111001682300
4		learnin		0741
		g		
2	Underwater optical wireless communication	Optics	2023	https://link.springer.com/article/10.1007/s11082-023-04638-7
5	system: Deep learning CNN with NOMA-based	based		
	performance analysis	on		
		deep		
		learnin		
		g		
2	A novel framework for brain tumor detection	Deep	2022	https://link.springer.com/article/10.1007/s11042-022-12362-9
6	based on convolutional variational generative	learnin		
	<u>models</u>	g		
2	Deep learning-based energy efficiency and	Optics	2023	https://link.springer.com/article/10.1007/s11082-023-04759-z
7	power consumption modeling for optical massive	based		
	MIMO systems	on		
		deep		
		learnin		
		g		
2	Optimized deep learning/kalman filter-based	Optics		https://link.springer.com/article/10.1007/s11082-022-04464-3
8	underwater localization in VLC systems	based		
		on		
		deep		
		learnin		
	Liver of OT lease as On a secretation of A. One and P. J. J.	g	2021	https://icassumlanai.aaaann/ahatmaat/daaannaant/0040040
2	Lung CT Image Segmentation: A Generalized	Deep	2021	https://ieeexplore.ieee.org/abstract/document/9916619
9	Framework Based on U-Net Architecture and	learnin		
-	Preprocessing Models Deep learning based channel actimation	g	2022	https://lipk.op.vip.gov.gov./grtiple/40.4007/g44000.000.04000.7
3	Deep learning based channel estimation	Deep	2023	https://link.springer.com/article/10.1007/s11082-022-04363-7
U	optimization in VLC systems	learnin		
11		g		

II	Page 4 of 5	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Ш	Rev. (1) Date (13-9-2018)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(1) Date (13-9-2018)

جامعة فاروس الاسكندرية

	Efficiency marker evaluation based on optimized	Industr	2023	https://journals.sagepub.com/doi/abs/10.1177/0040517523117172
-	deep learning supported by Bayesian	y		<u>0</u>
	optimization technique	Based		
		on		
		deep		
		learnin		
		g		
	Deep learning based BER improvement for	Deep	2023	https://link.springer.com/article/10.1007/s11082-023-04988-2
	NOMA-VLC systems with perfect and imperfect	learnin		
	successive interference cancellation	g		