

جامعة فاروس

Publications Template

#	Research Title	Field	Abstr	act		Year of Publication Publishing	Publishing Link "URL"
1	Total Ionizing Dose Effects on Commercial ARM Microcontroller for Low Earth Orbit Satellite Subsystems	Space radiation and materials	Despite the harshness of the space radiation on satellite electronic components, some Commercial Of The Shelf (COTS) can sustain such harsh environment. Thus, the low-cost advantage of the COTS can be utilized given that these electronic components meet the technical design requirements of the targeted satellite subsystem. Because of the complexity of microcontrollers and their various integrated functionality, they present a hardness assurance challenge. A careful technique was followed in analyzing the space radiation effects. Then rigorous tests should be conducted to test the performance of the candidate microcontrollers under these effects. This paper presents the predicted dose depth curve and the total ionizing does test results for a commercial ARM microcontroller for Low Earth Orbit (LEO) satellites. Such test results help estimate the effect of space environment on the microcontroller and decide if such microcontroller is an accepted candidate for LEO missions or not.			April, 2017	https://asat.journals.ekb.eg/ article_22762_fab1b7e5cac 17b8351b044472e9f5a40.p df
2	Thermo- physical and Mechanical Characterization of Epoxy/MWCN Ts'	Space materials and qualifica tion	In this study, we add MWCNTs to enhance the properties of the epoxy as a resin matrix for a nanocomposite material. Thermal properties are enhanced by improving the matrix properties. An investigation was performed to find the relation between the thermos-physical properties and the MWCNTs percentage in epoxy matrix. A various weight percentage of MWCNTs was dispersed in epoxy matrix to be examined these were (0.1, 0.25, 0.5, 1.0) %. The samples were prepared with the sonication technique for about an hour and cured in an open mold in autoclave at 80°C for about four hours and made into (6x6) mm square with (1.0) mm thickness. The thermal conductivity (k)			December- 2019	https://www.ijser.org/resea rchpaper/Thermo-physical- and-Mechanical- Characterization-of-Epoxy- MWCNTs- Nanocomposites.pdf
		age 1 of 7 (13-9-2018)	مستوى سريـة الوثيقة: استخدام داخلى Document Security Level = Internal Use	نموذجC-V Template		c. No. (PUA–IT–P01–F07) no.(1) Date (13-9-2018)	

جامعة فاروس الاسكندرية

			جامعة فاروس		
	Nanocomposite s		was obtained by measuring the thermal diffusivity (α) and thermal effusivity (e) using the photoacoustic (PA) technique. The composites exhibit about (180) % improvement in k at (1.0) wt. %. Micromechanical models were evaluated to predict through-thickness thermal conductivity of the manufactured sample, and then compared with the experimental results. A Finite Element Model (FEM) was developed to reveal heat transport mechanisms of the resultant nanocomposites. The nanocomposite design for finite element analysis (FEA) provided close predictions and performed better than the micromechanical models		
3	A Comparative Study of the Effect of MWCNT and Al ₂ O ₃ Nanoparticles on the Epoxy/Carbon Fiber Composite Space Structure	Composi te materials and character ization	The fabrication of epoxy-based nanocomposite with either multi-wall carbon nanotubes (MWCNT) or Alumina nanoparticles (ALNP) as additives were managed. To ensure a decent dispersion of additives in the epoxy resin, a magnetic stirrer and a high-energy sonicator were operated with temperature control. Different additives fractions of 0.5 wt.% and 1 wt.% were used for MWCNTs and ALNP, respectively. The nanocomposites were tested by a Universal Testing System (UTS) to determine the mechanical properties of nanocomposites before and after exposure to the Inductive Core Transformer (ICT) electron beam accelerator. The results obtained were compared with the deviation of their constituents' molecular structure acquired by Fourier Transform Infrared (FTIR) spectroscopy and Keithley 2635A electrical resistivity. The results revealed an enrichment in the mechanical properties of the epoxy matrix after the addition of additives and more performance improvement occurred after irradiation	June 2022	
4	Influence of Electron Accelerator Irradiation on Epoxy Nanocomposite Materials for	Nanoco mposite materials and space radiation	Different types of surfactants namely, nonionic, anionic and cationic represented by Polyoxyethylene sorbitan monooleate (Tween 80), sodium dodecyl sulfate (SDS), and cetyltrimethylammonium bromide (CTAB) respectively were used to select a proper type of surfactant enhancing dispersion quality of multiwall carbon nanotubes (MWCNTs) in the epoxy resin. In this study, the effect of electron beams whch are one of the most severe space environment threats. The candidate material proposed in this	2021	https://ajnsa.journals.ekb.e g/article_131992.html
Rev. (1	Page 2 of 7 Date (13-9-2018)	يثيقة: استخدام داخلي Document Security L	C-V Templater		

جامعة فاروس الاسكندرية

			جامعة فاروس		
	Spacecraft Structure		study will be used as a structural space material. The candidate material is characterized by furrier transformation infrared spectroscopy (FTIR) so as to identify the mechanical properties, surface tension, and electrical dispersion measurement. The mechanical results revealed that the strength increases by 10% while adding the CTAB surfactant, however, it decreases by 27% and 32% by adding tween-80 and SDS respectively. The anionic surfactant SDS, despite keeping the stiffness, the reference sample is of lower strength and elongation. The CTAB improves the mechanical properties by improving the strength and stiffness while elongation is significantly decreased by adding any of the surfactants. The surface tension of Tween 80 and anionic surfactant SDS, is $\sigma = 24.4$ mN/m while the surface tension in the case of the CTAB is $\sigma = 25.4$ mN/m. The surface tension and electrical dispersion measurement results reveal that the nonionic surfactant Tween 80 led to a uniform dispersion of MWCNTs in the epoxy than other surfactants. The effect of 100- kGy irradiation via electron beam on the structure and the electrical properties of the epoxy composites was studied. Improving the dispersion quality of the MWCNTs in epoxy nanocomposite materials leads to utilizing these materials in spacecraft structure		
5	Space Environment Effect on Polymeric Nano-Composit e Materials	Space radiation and composit e materials	Several kinds of polymeric nanocomposites were fabricated by including different typologies of nano-size fillers into a commercial epoxy matrix. The employed additives are multi-walled carbon nanotubes (MWCNTs), alumina (AL2O3) nanoparticles, and three types of graphene platelets (G-CD270, G-33C and G-24N). The effect of the exposition to low earth orbit (LEO) space threats on the candidate nano-composite materials were analyzed by characterization in an ultra-high vacuum (~ $5 \times 10-5$ Torr), and atomic oxygen (AO) environment (fluence ~ 1.5×1021 AO/cm2) in the presence of vacuum ultra-violet (VUV) radiation (intensity peaked at 410 mW/cm2). About outgassing, parameters such as total mass loss (TML), collected volatile condensable materials (CVCM), and water vapor regained (WVR) were measured. Furthermore, the mass loss and erosion rate due to the exposure to the synergic effects of AO and VUV were evaluated. Finally, the various	021	https://link.springer.com/ar ticle/10.1007/s42496-020- 00072-0
Rev. (2)	Page 3 of 7 Date (30-11-2019)	ثيقة: استخدام داخلي Document Security L	C-V Templatez		

جامعة فاروس الاسكندرية

				فاروس	جامعة			
			1	tal findings asse	transmission infrared spect ss the effectiveness of the p ns	1.		
6	Enhancement of carbon fiber/epoxy composite electrical, optical and thermal properties by using different types of nano-additives.	Material s and nano additives	Environmental space the optical, thermal, and el- based materials in space 3), Multiwall Carbon N (RGO) were added to the carbon fiber plain to for curing technique to male the electrical, optical, Nanocomposite were performed to evaluate materials. The optical, the visible Spectroscopy, Ph respectively. The results thermal properties of the The optical test show absorption spectra were the three thermal parame- the best enhancement pointed out that after the an insulating material to	hreats are become ectrical propertie ecraft. Three diff Vanotubes (MWC he epoxy matrix rm carbon fiber/e ke three differen and thermal pro- studied. Fourie the structural thermal, and elect hoto-acoustic spe s showed an enha e epoxy matrix are d that the near e in the infrared r neters diffusivity, after the additio e addition of Nan o a semi-conducti	ing more critical as they at as of the reinforced fiber po- erent Nano-particles Alumin CNT), and Reduced Graphen and then reinforced by bidin poxy by hand lay-up using at t reinforced materials. In this operties of the carbon fibe r transform infrared (FTI changes in the newly syn- trical properties were tested ctroscopy (PA), and Keithley ncement in the electrical, opt fter the addition of Nano-par at epoxy and epoxy/Nano-j ange. The thermal test indica effusivity, and conductivity n of MWCNTs. The electr o-particles, neat epoxy chang- ve material.	lymeric- la (Al ₂ O ne Oxide rectional utoclave is paper, er/Epoxy R) was thesized by UV- y 2635A ical, and ticles. particles ated that showed ical test ged from	2021	https://asat.journals.ekb.eg/ article_198202.html
7	Utilization of electric arc furnace dust as a filler for unsaturated polyester resin	Composi te materials	steelmaking process. It can be used as a filling study, EAFD is used as different weight percent studied mechanically by properties. The samples	contains a large r g additive to imp s a filler for the ntages. Neat UI y testing their te s were investigat	waste material produced du number of valuable metal ox rove the polymer properties unsaturated polyester (UP) P and UP/EAFD compound nsile, impact, flexural, and h ted physically by density ar nalysis was performed by tes	ides that s. In this resin in ds were hardness nd water	January 2022	https://www.sciencedirect. com/science/article/abs/pii/ S0957582022000891
Rev. (1	Page 4 of 7) Date (13-9-2018)	ِتْيَقَة: استخدام داخلی Document Security L	6	نموذجC-V Template	Doc. No. (PUA–IT–P01–F07) Issue no.(1) Date (13-9-2018)]		

جامعة فاروس الاسكندرية

جامعة فاروس

				روش	جامعه فا		
			determined usir the incorporation affected the me The hardness o a maximum val showed an opt composites dec the composites EAFD in UP m of the steel indu composite indu	ng Thermogravimetric An on of the EAFD particles echanical properties by in f the UP/EAFD composi- ue at 10 wt% of EAFD. timal value at 5 wt% reased by 34% at 30 wt showed a remarkable in atrix would help improv- ustry. Finding useful app	ally, the thermal properties nalysis (TGA). The result show is into the UP matrix has signincreasing tensile strength up to ites increases up to 8.5% and Flexural strength and impact so of EAFD. The flammability % of EAFD. The thermal state increasing trend. Therefore, up the environmental pollution lications of this dust as a filler mazardous waste into a byprod e their profit.	wed that ificantly to 42%. reaches strength of the bility of utilizing control r for the	
8	The Role of Reduced Graphene Oxides in Enhancing the Mechanical Properties of Satellite Structure Nanocomposite Materials against Electron Beam	Composi te materials and nano additives	Materials devel ant space envir represent one o to the Spacecrat according to th by adding Redu EB. RGO addi preparation me additives were Integrated Curr kGy. The mec Universal Testi constituents' me (FTIR) spectro Resistivity (ER properties of ep	oped for space application commental threats. The I oped for space application oped for space application of the most hazardous space ft (SC) components; the operation of the space mission and is study based on the car acced Graphene Oxide (R tion was varies in three operations) (RGO-24N, RG dispersed in the epoxy r ent Transformer (ICT) ell chanical properties of I ong System (UTS) and we olecular structure obtained scopy, Dynamic Mecha a). The results revealed boxy matrix after the add	on to sustain both of mechanic Electron Beam (EB) was sele ace environment parameter su charged particles flux which pr its orbit parameters. The ca bon fiber/epoxy which was er GO) and investigate its resist e different compounds with d O-33C and RGO-G270). Th natrix. Each sample was subject encorrelated to the variation ed by Fourier Transformation I unical Analysis (DMA) and T an enhancement in the mec- dition of RGO except for (RG perties even after irradiation.	ected to abjected redicted andidate ahanced tance to lifferent ae RGO ected to e of 100 ed by a of their Infrared Electric chanical	https://www.scitechnol.co m/peer-review/the-role-of- reduced-graphene-oxides- in-enhancing-the- mechanical-properties-of- satellite-structure- nanocomposite-materials- against OQgh.php?article_id=1390 <u>6</u>
Rev. (2)	Page 5 of 7 Date (30-11-2019)	يْيْقَة: استخدام داخلي Document Security L		نموذجC-V Template	Doc. No. (PUA–IT–P01–F07) Issue no.(2) Date (30-11-2019)		

جامعة فاروس الاسكندرية

				روس	جامعة فا			
9	Effect of γ- irradiation on the optical and electrical properties of fiber reinforced composites	Composi te materials and space radiation	reinforced fibe Fiberglass/epox samples manufa The selected teo materials produ- those samples Moreover, the Fourier transfor constituents to radiation expose In this study, the showed a slight dose increase; samples showe change of opti- maximum abso- suitable for stru- years. In addition	r polymeric-based mat y and Kevlar fiber/ep actured with hand lay-up hnique is simple and low action. The electric con were measured with in absorptivity, band gap rm infrared (FTIR) was evaluate the change is use dose. e change of electrical pro- t variation of the test pa this variation is place d an insulator stable b cal properties for both orptivity at the gamma cture materials and ther	optical and electrical properties terials became an important oxy were selected as inve- o without autoclave curing tech o cost while being rarely used if ductivity and dielectric cons- ncreasing the gamma radiatic and color change were dete performed to each of the m in the investigated materials operties for both investigated materials operties for both investigated materials operties for both investigated materials operties for both investigated materials of a composite specimens show dose 750 kGy. These material poxy matrix was degraded. He ar fiber or fiberglass.	t issue. stigated chnique. in space tant for on dose. rmined. aterial's due to haterials gamma e tested od. The ved the ials are s than 7	2017	https://www.sciencedirect. com/science/article/abs/pii/ S0969806X16304662
10	Outgassing Effect on Spacecraft Structure Materials	Composi te materials in space environ ment	performance of of materials are us Carbon fiber, glas materials are ma autoclave curing, in thermal multil manufacturing n study proves tw	composite materials used is ed. Three types of epoxy as fiber and kevlar, which a inufactured by commercial . The fourth material is pol ayer insulators. The aim of naterials to be used as Lo o important results; the o	contributed to degrade the me in satellite. In this paper, four co based composite materials are re used in satellite structures. Th al method (hand lay-up method lyimide which is a commercial sho this paper is to qualify those con by Earth Orbit satellite structur use of hand lay-up Kevlar/epox he commercial Polyimide (Artil	e tested: e tested: without eet used nmercial res. This cy in the	2015	https://www.researchgate.n et/publication/312198021_ Outgassing_Effect_on_Spa cecraft_Structure_Material <u>§</u>
Rev. (1	Page 6 of 7) Date (13-9-2018)	ِنْيَعَة: استخدام داخلي Document Security L		نموذجC-V Template	Doc. No. (PUA-IT-P01-F07) Issue no.(1) Date (13-9-2018)			

جامعة فاروس الاسكندرية

			جامعة فاروس		
			confirmed as a new material used in space as a layer in the multilayer insulation at the lower temperature side.		
11	Performance Evaluation of Selected Irradiated Space Structure Composites Manufactured by the Hand Lay-Up Method	Composi te materials and space radiation	Polymeric composites are widely used in manufacturing the space structures because of their superior light weight compared with either the metallic ferrous or non-ferrous materials. These materials should secure high strength to weight ratio and reasonable thermal and/or optical properties. In this work, the selected polymeric matrix composites reinforced with three different types of fibers, namely, carbon, fiberglass, and Kevlar were manufactured with the low-cost hand lay-up method. These samples were irradiated with different doses of γ -rays. These prescribed doses were chosen to simulate the charged particles space hazards in a well-defined orbit for 3.75, 5.625, and 7.5 years. Gases trapped during the manufacturing process were extracted and analyzed using the vacuum simulator facility at relatively high temperature to evaluate their effect on the optical surfaces. Mechanical properties variation of the irradiated composites was traced by tensile testing and correlated to the variation of their constituents' molecular structure which was analyzed by the Fourier Transformation Infrared (FTIR) spectroscopy. Thermal stability of the constituents of the irradiated composite, with the previously prescribed doses, was monitored at a wide range of temperatures	2018	<u>https://doi.org/10.15866/ire</u> <u>ase.v11i4.13726</u>
12	Influence of Simulated Space Hazards on Polyimide Artilon TM Type Used in Space Applications	Composi te materials and space radiation	The polyimide performance was monitored and evaluated after exposure to ionized and particulate radiation as a space hazard. The material was irradiated with three different doses 500, 750 and 1000kGy in CO60 source in the presence of air. Both non-irradiated and irradiated materials were characterized by tensile test, Thermo- Gravimetric Analysis (TGA) and Fourier Transform Infra-Red (FTIR). Quantum modeling was executed by using "Gaussian 5" software program for chemical structure verification. The non-irradiated material showed a super ductility but revealed a brittle behavior when irradiated with 500 and 1000 kGy gamma doses. Nevertheless, the material attained moderate ductility when exposed to 750kGy. Results by the stated characterization tools matched with the evaluated behavior and confirmed by the quantum modeling	2016	https://www.praiseworthypri ze.org/jsm/index.php?journal =irease&page=article&op=vie w&path%5B%5D=19422

Page 7 of 7	مستوى سرية الوثيقة: استخدام داخلي		Doc. No. (PUA-IT-P01-F07)
Rev. (2) Date (30-11-2019)	Document Security Level = Internal Use	نمودجC-V Template	Issue no.(2) Date (30-11-2019)