

جامعة فاروس الاسكندرية

**Marketing Department** 

إدارة التسويق

# **Publications Template**

| # | Research Title                                                                                                                                        | Field        | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Year of Publication<br>Publishing | Publishing Link "URL"                                |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|
| 1 | A Nanoparticles based<br>Microbiological Study<br>on the Effect of<br>Rosemary and Ginger<br>Essential Oils against<br><i>Klebsiella pneumoniae</i> . | Microbiology | Background:Klebsiella pneumoniae is a nosocomial pathogen inoutbreaks of hospital infections. It is one of the majorfactors for morbidity and mortality in hospitalizedpatients especially those infected with colistin-resistantpathogens. Many plant essential oils have antimicrobialactivities and have been investigated as natural sources tocombat multiple antibiotic resistances. Moreover, recentadvances in phytonanotechnology have created excitingopportunities for the management of many infections.Objective:This study aims at investigating the antimicrobial andantibiofilm effect of rosemary and ginger essential oil-based nano-sized formulations on colistin resistant K.pneumonia clinical isolates.Methods:Isolation and identification of 30 K. pneumonia isolatesfrom different human samples were done followed byantibiotic susceptibility testing and detection of biofilmgene (mrkD). Examination of the activity of the testedessential oils and their chitosan nanoparticle formulationsagainst the selected isolates was made by determinationof their MICs using broth microdilution method followedby biofilm inhibition test and quantitative real-time PCRfor the expression of mrkD gene in the presence of theoils and nanoparticles formulations compared to <tr< td=""><td>2020</td><td>https://benthamopen.com/ABSTRACT/TOMI<br/>CROJ-14-205</td></tr<> | 2020                              | https://benthamopen.com/ABSTRACT/TOMI<br>CROJ-14-205 |





#### Marketing Department

|   |                                                                                                                                                       |              | <b>Results:</b><br>Our results showed that the minimum inhibitory<br>concentration of rosemary and ginger oils was 1250<br>µg/ml, that of nanostructured lipid carrier-rosemary oil<br>and nanostructured lipid carrier-ginger oil was 625 µg/ml<br>and rosemary oil loaded chitosan nanoparticles and<br>ginger oil loaded chitosan nanoparticles possessed<br>minimum inhibitory concentration of 156 µg/ml. Results<br>also revealed complete (100%) inhibition for <i>mrkD</i> gene<br>expression when compared to untreated <i>K. pneumonia</i> .<br><b>Conclusion:</b><br>Oil loaded chitosan nanoparticles showed the highest<br>antimicrobial and antibiofilm activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------|
| 2 | Synthesis and<br>molecular docking<br>study of some 3, 4-<br>dihydrothieno [2, 3-d]<br>pyrimidine derivatives<br>as potential<br>antimicrobial agents | Microbiology | In continuation of our research program aiming at<br>developing new potent antimicrobial agents, new series<br>of substituted 3,4-dihydrothieno[2,3-d]pyrimidines was<br>synthesized. The newly synthesized compounds were<br>preliminary tested for their in vitro activity against six<br>bacterial and three fungal strains using the agar diffusion<br>technique. The results revealed that compounds 7, 8a,<br>10b, 10d and 11b exhibited half the potency of<br>levofloxacine against the Gram-negative bacterium,<br><i>Pseudomonas aeruginosa</i> , while compounds 5a, 8b, 10c<br>and 12 displayed half the potency of levofloxacine<br>against <i>Proteus Vulgaris</i> . Whereas, compounds 7, 10b,<br>10d and 11b showed half the activity of ampicillin<br>against the Gram-positive bacterium, <i>B. subtilis</i> . Most of<br>the compounds showed high antifungal potency.<br>Compounds 3, 6, 7, 9b, 10a, 11a, 11b, 15 and 16<br>exhibited double the potency of clotrimazole against <i>A.</i><br><i>fumigatus</i> . While compounds 3, 4, 5a, 5b, 9b, 10a, 10b,<br>10c, 13, 15, 16 and 18 displayed double the activity of<br>clotrimazole against <i>R. oryazae</i> . Molecular docking<br>studies of the active compounds with the active site of the | 2019 | https://www.sciencedirect.com/science/article/<br>abs/pii/S0045206819300276 |

إدارة التسويق





|   | Marketing Departmer                                                                                                       | nt           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | إدارة التسويق |                                                                             |  |
|---|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|--|
|   |                                                                                                                           |              | <i>B. anthracis</i> DHPS, showed good scoring for various interactions with the active site of the enzyme compared to the co-crystallized ligand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                                             |  |
| 3 | Synthesis, antibacterial<br>evaluation, and DNA<br>gyrase inhibition<br>profile of some new<br>quinoline hybrids          | Microbiology | Antibiotic-resistant bacteria continue to play an important<br>role in human health and disease. Inventive strategies are<br>necessary to develop new therapeutic leads to challenge<br>drug-resistance problems. From this perception, new<br>quinoline hybrids bearing bioactive pharmacophores<br>were synthesized. The newly synthesized compounds<br>were evaluated for their in vitro antibacterial activity<br>against nine bacterial pathogenic strains. The results<br>revealed that most compounds exhibited good<br>antibacterial activities. Seven compounds ( <b>2b</b> , <b>3b</b> , <b>4</b> , <b>6</b> ,<br><b>8b</b> , and <b>9c</b> , <b>d</b> ) displayed enhanced activity against<br>methicillin-resistant <i>Staphylococcus aureus</i> compared to<br>ampicillin. These compounds were subjected to an in<br>vitro <i>S. aureus</i> DNA gyrase ATPase inhibition study,<br>which revealed that compounds <b>8b</b> , <b>9c</b> , and <b>9d</b> showed<br>the highest inhibitory activity with IC <sub>50</sub> values of 1.89,<br>2.73, and 2.14 μM, respectively, comparable to<br>novobiocin (IC <sub>50</sub> , 1.636 μM). Compounds <b>2a–c</b> , <b>3a</b> , <b>7c</b> ,<br><b>9c</b> , <b>d</b> , and <b>10a,b</b> revealed half the potency of levofloxacin<br>in inhibiting the growth of <i>Pseudomonas aeruginosa</i> . As<br>an attempt to rationalize the observed antibacterial<br>activity for the most active compounds <b>8b</b> , <b>9c</b> , and <b>9d</b> ,<br>molecular docking in the ATP binding site of <i>S. aureus</i><br>gyrase B was performed using Glide. Such compounds<br>could be considered as promising scaffolds for the<br>development of new potent antibacterial agents. | 2019          | https://onlinelibrary.wiley.com/doi/abs/10.100<br>2/ardp.201900086          |  |
| 4 | Design, synthesis,<br>antibacterial evaluation<br>and molecular docking<br>studies of some new<br>quinoxaline derivatives | Microbiology | Development of new antimicrobial agents is a good<br>solution to overcome drug-resistance problems. From this<br>perspective, new <u>quinoxaline derivatives</u> bearing various<br>bioactive <u>heterocyclic</u> moieties (thiadiazoles,<br><u>oxadiazoles</u> , <u>pyrazoles</u> and thiazoles) were designed and<br>synthesized. The newly synthesized compounds were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2018          | https://www.sciencedirect.com/science/article/<br>abs/pii/S0045206817307423 |  |





|   | Marketing Departmer                                                                                                                          | nt           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | إدارة التسويق                                                     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------|
|   | dihyropteroate synthase<br>enzyme                                                                                                            |              | evaluated for their <i>in vitro</i> <u>antibacterial activity</u> against<br>nine bacterial human pathogenic strains using the <u>disc</u><br><u>diffusion</u> assay. In general, most of the synthesized<br>compounds exhibited good antibacterial activities. The<br>thiazolyl <u>11c</u> displayed significant antibacterial activities<br>against <u>P. aeruginosa</u> (MIC, 12.5 µg/mL vs <u>levofloxacin</u><br>12.5 µg/mL). <u>Molecular docking</u> studies indicated that<br>the synthesized compounds could occupy both <i>p</i> -amino<br><u>benzoic acid</u> (PABA) and <u>pterin</u> binding pockets of the<br><u>dihydropteroate synthase</u> (DHPS), suggesting that the<br>target compounds could act by the inhibition of bacterial<br>DHPS enzyme. The results provide important<br>information for the future design of more potent<br><u>antibacterial agents</u> .                                                                                                                                                      |      |                                                                   |
| 5 | Synthesis of pyrazolo-<br>1,2,4-triazolo[4,3-<br>a]quinoxalines as<br>antimicrobial agents<br>with potential<br>inhibition of DHPS<br>enzyme | Microbiology | Aim: The development of a new class of antimicrobial agents is the optimal lifeline to scrap the escalating jeopardy of drug resistance. Experimental: This study aims to design and synthesize a series of pyrazolo-1,2,4-triazolo[4,3- <i>a</i> ]quinoxalines, to develop agents having antimicrobial activity through potential inhibition of dihyropteroate synthase enzyme. The target compounds have been evaluated for their <i>in-vitro</i> antimicrobial activity. Results & discussion: Compounds 5b, 5c were equipotent (minimal inhibitory concentration = 12.5 $\mu$ g/ml) to ampicillin. The docking patterns of 5b and 5c demonstrated that both fit into <i>Bacillus Anthracis</i> dihydropteroate synthase pterin and <i>p</i> -amino benzoic acid-binding pockets. Moreover, their physicochemical properties and pharmacokinetic profiles recommend that they can be considered drug-like candidates. The results highlight some significant information for the future design of lead compounds as antimicrobial agents. | 2018 | https://www.future-<br>science.com/doi/full/10.4155/fmc-2018-0082 |





|   | Marketing Departmer                                                                                                                                                                                         | nt           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | إدارة التسويق                                                          |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------|
| 6 | Efficacy of the Clove<br>Oil, Cinnamon Oil,<br>Thyme Oil and<br>Origanum Oil against<br>Multidrug Resistant<br><i>Pseudomonas</i><br><i>aeruginosa</i> and<br><i>Burkholderia cepacia</i><br><i>Complex</i> | Microbiology | The increased frequency in clinically observed cases of<br>antibiotic resistance has been attributed to many factors<br>such as the misuse and overuse of antibiotics since in<br>some countries, antibiotics are sold over the counter<br>without a prescription, the large quantities of antibiotic<br>waste produced from livestock rearing, overconfidence in<br>human control over infectious diseases and the continued<br>decline in the number of newly approved antibiotics. Few<br>studies have focused on the investigation of antimicrobial<br>activities of medicinal plants against clinically isolated<br>antibiotic resistant pathogens. Hence the aim of this work<br>is to investigate the antimicrobial effect of clove,<br>cinnamon, thyme and origanum on clinically isolated<br>multidrug resistant strains of <i>Pseudomonas aeruginosa</i><br>and <i>Burkholderia cepacia complex</i> . | 2017 | https://www.ijcmas.com/abstractview.php?ID=<br>1270&vol=6-1-2017&SNo=4 |