One-Way Solid Slabs

Slabs

- They are structural elements with a small thickness comparable to their dimensions in the other two directions.
- Used for floors, roofs and bridge decks.
- Maybe supported by edge beams or walls, or they maybe supported directly by columns; flat slab.
One-Way & Two-Way Slabs

- If the load is transferred in one direction; it is a one-way slab.

- When the load is transferred in two directions; then it is a two-way slab.

- Only a strip with 1m width is considered for the design.

Definition of One-Way slabs

- Slabs supported only by two opposite edges

- Slabs supported at four edges with a rectangularity ratio; \(r > 2 \)

\[
r = \frac{m_b}{m_a}
\]

- \(m_a \) & \(m_b \) = 1 for simple span
- = .87 for spans continuous from one end only
- = .76 for spans continuous from both ends

When the slab is supported by walls or \(LL > 5kN/m^2 \); \(m_a = m_b = 1 \)
Effective Span

\[L = \min \left\{ \max \left(\frac{L_n + t_e}{1.05xL_n}, \frac{C.L. - C.L.(L_{cl})}{L_n} \right) \right\} \]

For cantilevers

\[L = \min \left\{ \frac{L_n + t_e}{edge - C.L.(L_{cl})} \right\} \]

Minimum Thickness

- **Egyptian Code E203 – 2010; table (4-10) page 4-51 & page 6-4:**

<table>
<thead>
<tr>
<th>Support condition</th>
<th>Simply supported</th>
<th>Continuous one end</th>
<th>Continuous both ends</th>
<th>cantilever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear span ((L_n/t_e))</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>Effective span ((L/t_e))</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

- For spans less than 10m or cantilevers less than 2m long.
- St. 400/600; for other grades divide values by \(\frac{0.4 + \frac{f_s}{650}}{f_s} \)
- \(t_s \geq 80\text{mm} \) for static loads & \(t_s \geq 120\text{mm} \) for dynamic loads
Design Steps

- **Loading:**
 - **Dead loads:**
 - Own weight = $\gamma_c t_s$
 \[\gamma_c = 25 \text{kN/m}^3\]
 - Flooring
 Consider weight of tiles, sand and mortar $\approx 2 \text{kN/m}^2$
 - **Live Loads:**
 - Code specifies LL value according to the building usage.

Design Steps

- **Cases of Loading:**
 - When spans do not allow for using code coefficients, cases of loading should be utilized to get the bending moment envelope
 - $W_{\text{max}} = 1.4 \text{ D.L.} + 1.6 \text{ L.L.}$
 - $W_{\text{min}} = 0.9 \text{ D.L.}$

For maximum bending moment in Span 2

For maximum bending moment at support B
Calculate Bending Moment

- Two spans
 - When $LL \leq DL$, and the difference between spans is not more than 20%; then the bending moment could be calculated as following.

 - $W = w_u$ for limit state design method.
 - $w = w$ for allowable stresses design method.

- More than two spans
 - Spans differences are not more than 20%
 - $LL \leq DL$
Design of Reinforcement

- \(d = t_s - 20\text{mm} \)
- \(A_{s\text{min}} = \frac{0.6}{f_y} bd \geq \begin{cases} 0.25 \times b x d \; \text{mild steel} \; f_y = 240 & 280 N/mm^2 \\ 0.15 \times b x d \; \text{high grade} \; f_y = 360 & 400 N/mm^2 \end{cases} \)
- Design for section at support
- Design for section at mid-span
 - \(R_i = \frac{M_s}{f_w bd^2} \)
 - Get \(\omega \) from curves
 - \(A_s = \omega \frac{f_w bd}{f_y} \)

Reinforcement

- 1/3 reinforcement should be straight.
- Distribution reinforcement \(\approx 20\% \) of main reinforcement.
- Bent-up reinforcement @ \(l_w/5 \) and extend to \(l_w/4 \) in the next span.
- Maximum spacing of rebars \(\leq 200\text{mm} \).
Reinforcement

- Min. bar diameter is 6mm for straight rebars & 8mm for bent-up rebars.

- For $ts \geq 160\text{mm}$; use top reinforcement mesh with $As \approx 20\%$ main As & minimum $5\phi 8/\text{m}^2$ for mild steel ($5\phi 6/\text{m}^2$ for high tensile).

One-Way Solid Slabs Example
Example

- **Materials**
 - $F_{cu} = 25N/mm^2$
 - St. 360/520

- **Loading**
 - Flooring 2kN/m²
 - L.L. 2kN/m²

Using Design Aids (cont’d)

![Design Chart for Sections Subjected to Simple Bending](image-url)