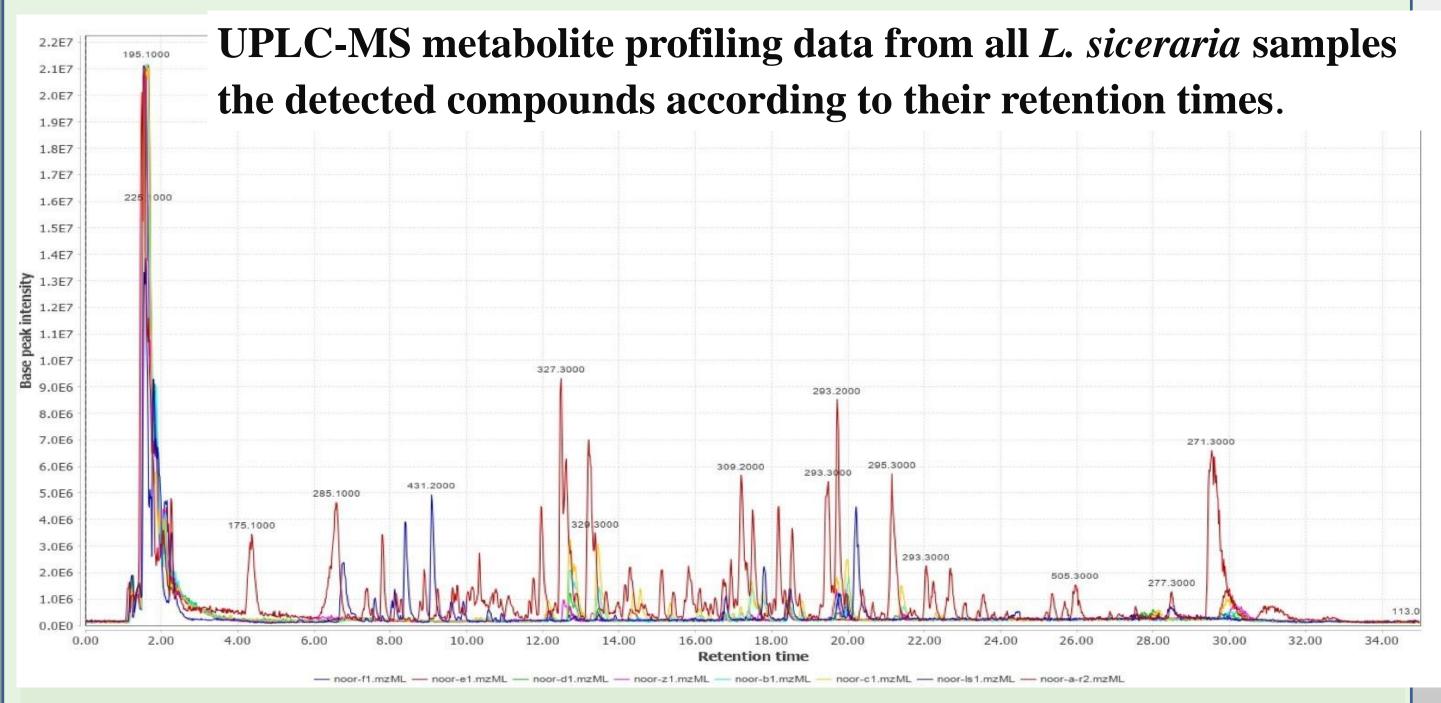
Metabolome profiling of *Lagenaria siceraria* leaves extracts of different growth regulators using UPLC/MS/MS analysis

Nour S. Al-Shaikh, <u>Hala H. Zaatout*</u>, Shaimaa M. Sallam, Amr M. El-Hawiet and Hala M. Hammoda

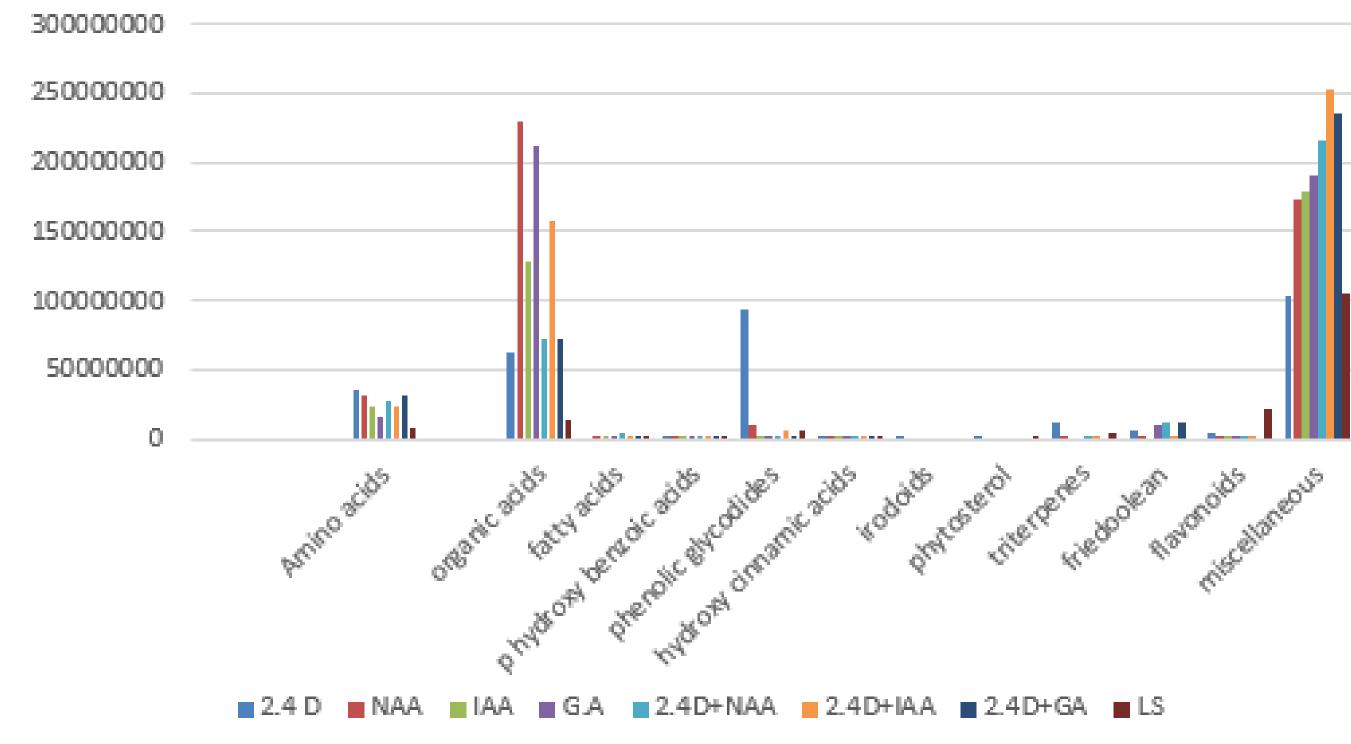

Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt

Introduction

Lagenaria siceraria (Mol.) Standl, Family Cucurbitaceae, commonly known as bottle gourd, is a medicinal plant widely cultivated in African and Asian countries. There is a great interest in its pharmacological activities and the corresponding bioactive constituents which has an amazing and significant ability for the treatment of various diseases. Plant tissue culture represent a potential renewable source of valuable medicinal compounds. study was conducted to investigate This organogenesis from L. siceraria explants and the effects of various plant growth regulators on its metabolic profile.

Materials and Methods

The present work involves the application of a powerful LC-ESI-MS/MS separation system coupled with a TQD mass analyzer for the comprehensive characterization of leaves extracts of Palestinian L. siceraria. Various plant growth regulators were used; 2,4-D, NAA, IAA, GA, 2,4-D+NAA, 2,4-D+IAA, 2,4-D+GA. Assignment of secondary metabolites of L. siceraria leaves and their corresponding hormonal cultured extracts were performed using an UPLC XEVO TQD triple quadruple instrument Waters Corporation, Milford, MA01757 U.S.A. a triple quadruple (TQD) mass spectrometer in conjunction with electrospray ionization (ESI) source were exploited to analyze the samples in a negative ionization (NI) mode. The negative ion mode was chosen as it revealed a higher sensitivity, more observable peaks, so that, wide range of structural information can be obtained. Metabolite assignments were determined according to their corresponding MS data (quasi-molecular ions as well as diagnostic MS/MS fragmentation pattern compared with our inhouse database, reference literature, phytochemical dictionary of natural products database (DNP).


Overlay of total ion chromatograms (TIC) for chromatographic separation of different callus extracts of *L. siceraria* distinguished by different line pattern.

L. siceraria, 2,4-D, NAA, IAA, GA, 2,4-D+NAA, 2,4-D+IAA, 2,4-D+GA.

Results

Seventy four metabolites were annotated in bottle gourd via UPLC/MS/MS analysis. These Metabolites were belonging to terpenoids, flavonoids, amino acids, organic acids, and phytosterols classes.

LC-MS/MS comparison between different extracts of *L. siceraria* exhibited the effect of plant growth regulators on the metabolic profile.

- •It was observed that Amino acids were appeared extensively, in different plant growth regulators samples
- •Mass analysis proved that phenolic glycosides were the highest in 2,4-D sample.
- •On the other hand, triterpenes were found in 2,4-D followed by NAA samples, while, mixure of 2,4-D+GA, 2,4-D+NAA and GA samples showed highest amount of friedooleanean. Flavonoids were better detected in the methanolic extracts of *L. sceraria* leaves followed by 2,4-D sample
- •The most remarkable observation was the higher concentration of organic acids in all growth regulators samples especially, NAA followed by GA then combination of 2,4-D+IAA
- •It was found that plant growth regulators enhanced the production of different metabolites compared to the ethanolic extract of L. siceraria leaves and 2,4-D sample was the richest extract. *Lageneria* leaves extracts of different growth regulators exhibited significant antioxidant activities using DPPH technique.

Conclusions

This study concerning tissue culture and metabolomic profiling of the resulted callus of *Lagenaria sciraria*. It was found that plant growth regulators enhanced the production of different metabolites compared to the ethanolic extract of *L. siceraria* leaves and 2,4-D sample was the richest extract. It is worth mentioning that tissue culture study together with metabolomic profiling is done for the first time in genus *Lagenaria*.

Our established method of analysis displayed a considerable improvement in analytical effectiveness, sensitivity and time where most of compounds were efficiently separated in less than 32 minThis provides new possible attributes for in nutrition and health-care fields

References

- 1. Minocha, S., An overview on Lagenaria siceraria (bottle gourd). Journal of Biomedical and Pharmaceutical Research, (2015). 4(3): 4 -10
- Milnocha, S., An overview on Lagenaria siceraria (bottle gourd). <u>Journal of Biomedical and Pharmaceutical Research</u>, (2015). 4(3): 4 10
 Hala Zaatout, Nour ALShaikh, Shaimaa Sallam, Hala Hammoda, Phytochemical And Biological Activities of Lagenaria siceraria: An Overview, <u>Egypt. J. Chem</u>. (2023), 66(10), 479 495
- 3. Jaiswal, R. and N. Kuhnert, Identification and characterization of the phenolic glycosides of *Lagenaria siceraria* Stand.(bottle gourd) fruit by liquid chromatography –tandem mass spectrometry. *Journal of agricultural and food chemistry*, (**2014)**, 62(6): 1261 -1271.
- 4. Sakna, S. T., A. Mocan, H. N. Sultani, N. M. El-fiky, L. A. Wessjohann and M. A. Farag "Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities." *Food chemistry* (**2019**), 293: 233-246
- 5. Bankova, V., D. Bertelli, R. Borba, B. J. Conti, I. B. da Silva Cunha, C. Danert, M. N. Eberlin, S. I Falcão, M. I. Isla and M. I. N. Moreno "Standard methods for Apis mellifera propolis research." *Journal of Apicultural Research* (**2019**). 58(2): 1-49.
- 6. Gonda, I., E. Bar, V. Portnoy, S. Lev, J. Burger, A. A. Schaffer, Y. a. Tadmor, S. Gepstein, J. J. Giovannoni and N. Katzir "Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit." *Journal of experimental botany* (**2010**), 61(4): 1111-1123.